
HWPE: A CNN Accelerator for RISC-V

Author: Hao Chen , Qiang Chen

What can HWPE do?

• A CNN hardware acceleration coprocessor for RISC-V

• Support Convolution layer and ReLU layer

• Transform convolution into matrix multiplication (im2col on the fly)

• Kernel size from 3×3 to 11×11

• Support data type int8(uint8), exp4 (4 bits of exponential scale) and ternary

• 16 dot-product operations of 64 bits operands(8 int8, 16 exp4 or 32 ternary)
per cycle

• Complete a convolution layer operation with one configuration

2

HWPE（CNN Hardware Processing Engines）

Convolution & ReLU

3

• Fully-Connected layer and pooling layer are still calculated by MCU

Architecture Diagram

• Data fetcher accepts the command from

MCU and fetches data from Feature Map

SRAM and pushes them into FIFO in the

way of im2col

• FIFO is used as a buffer for the left matrix

• 16 PE, each one stores a 64 bits right

matrix, performs multiply-accumulate and

stores a column result matrix

• Two kernel SRAMs, each one broadcasts

the data of the right matrix to 8 PE

4

Convolution / Matrix Multiplication

• Transform convolution into matrix
multiplication

• Left Matrix : data-fetcher calculate
memory address to access data in
the way of im2col

• Right Matrix : store the kernel in the
way of channel priority in advance

5

1 2 0
1 1 3
0 2 2

0 2 1
0 3 2
1 1 0

1 2 1
0 1 3
3 3 2

1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 1 3 1 0 1 0 0
2 2 2 2 2 2 2 2 1 3 1 1 0 1 2 1
1 3 1 1 0 1 2 1 2 1 3 1 1 0 0 1

1 2 0
0 1 0
1 1 2

1 2 1
1 0 1
0 1 0

0 2 1
0 1 0
1 0 2

1 2 0
0 2 3
0 0 2

1 2 1
0 1 1
0 1 0

H

W

C

1 1
2 2

1 1
1 1

0 1
1 0

1 0
0 1

2 1
2 1

1 2
2 0

1 1
0 0

1 0
0 1

0 1
1 0

1 0
1 1

2 1
0 1

1 2
2 0

1 1
2 2

0 1
0 1

1 0
0 1

0 2
0 1

1 1
1 2
0 1
1 1
1 2
0 1
1 1
0 0

2 0
1 2
1 2
0 1
0 0
1 2
2 0
0 0

1 0
1 1
1 2
1 0
0 1
1 2
1 0
1 2

2 1
1 1
0 0
0 1
1 1
0 0
2 1
1 1

30 41
24 35

30 47
29 38

30 30
24 29
41 47
35 38

2 2 2 2 2 2 2 2 1 3 1 1 0 1 2 1
1 3 1 1 0 1 2 1 2 1 3 1 1 0 0 1
0 1 1 0 1 1 0 1 3 2 3 0 1 0 3 1
3 2 3 0 1 0 3 1 2 0 2 2 0 2 2 0

× =

左矩阵的行代表了H和W两个维度上坐标不同的点，
但是不同行对应C维度上相同的点

Filter
Kernel

Filter
Kernel
Matrix

Feature
Map

Output
Result

Output
Result
Matrix

Feature
Map

Matrix

Matrix
Multiplication

Convolution

HWPE Instructions

Instruction funct rd xd rs1 xs1 rs2 xs2

HWPEWriteFmapAddrReg 1 addr_idx 0 addr1 1 addr2 1

HWPEWriteCfgReg 2 —— 0 cfg 1 cfg 1

HWPEMatrixMac 4 —— 0 W/H_count 1 H/W_stride 1

HWPEWriteAccReg 8 AccReg_ID 0 M(idx) 1 PE_ID 0

HWPEReadAccReg 16 M(idx) 1 Acc_Reg_ID 0 PE_ID 0

HWPEReLUMemWriteAccReg 32 —— 0 M(addr) 1 AccReg_ID 0

HWPEReset 64 —— 0 —— 0 —— 0

HWPE Instructions table

RISC-V basic opcode mapping table

• HWPE has only 7 instructions based on custom-0 opcode of RISC-V extended instruction set

6

What do HWPE Instructions do?

1 HWPEReset perform a synchronous reset for the HWPE registers

2 HWPEWriteFmapAddrReg
configure 8 base address registers which point to the 8 initial
points of the H-W plane

3 HWPEWriteCfgReg configure control registers for convolution

4 HWPEWriteAccReg reset or set AccRegs / adds the bias in convolution layers

5 HWPEMatrixMac start first round of convolution operation

6 HWPEReadAccReg read the AccRegs back to the MCU general registers

7 HWPEReLUMemWriteAccReg
execute ReLU operation and transfer the 32 bits AccRegs to 8 bits,
then store the results into the specified memory address

7

How to run CNN: Config Registers
• A convolution task is determined by the configuration registers.

 FmapConvAddr[i] = FmapAddrBase[i] + x·W_stride + y·H_stride 0≤x≤H_count; 0≤y≤W_count

 FmapSramAddr[i] = FmapConvAddr[i] + m·Conv_W_stride + n·Conv_CH_stride
0≤m≤Conv_CH_count; 0≤n≤Kernel_size

Head address of convolution windows:

SRAM memory access address:

Config Registers:
FmapAddrBase[8]
H_stride
W_stride
H_count
W_count
Conv_W_stride
Kernel_size
Conv_CH_count

8

How to run CNN
1. Configure the configuration registers with HWPEWriteFmapAddrReg & HWPEWriteCfgReg

• select 8 initial points on the H-W plane as base address, each one is the head address in the first convolution
window.

2. Start the first round of convolution operations with HWPEMatrixMac. 128(8x16) output points are calculated.

• In a round of computation, the data is fetched to perform dot multiplication. The address of the data is calculated
according to registers Conv_W_stride and Kernel_size Conv_CH_count

• Multiply 8 points in the H-W plane of feature map and16 different kernels to obtain 128 output points.

3. Read the output back to the MCU general register for further operation with HWPEReadAccReg

or execute ReLU operation and transfer the 32 bits output to 8 bits, then store into the specified memory

address with HWPEReLUMemWriteAccReg

4. HWPE continues the next round calculation until the last HWPEReadAccReg/ HWPEReLUMemWriteAccReg

• Convolution windows move by the size of stride, first in the H direction and then in the W direction.

• Head address of convolution window will be updated according to registers W_stride H_sride H_count W_count
every round. Then the data is fetched to perform dot multiplication in the way of im2col.

5. When calculate H_count*W_count*K_count rounds, the entire convolution task is completed.

• A H-W plane needs H_count*W_count rounds computation.

• For K kernels, the entire convolution task needs H_count*W_count*K_count rounds.(K_count=K/16)

9

Convolution with One Configuration

• In general, one configuration can complete a convolution layer operation.

• Select 8 initial points and move according to the configuration registers to
cover the entire H-W plane as far as possible.

• If not, reconfigure the configuration registers and select new 8 initial points
to cover the entire H-W plane.

• MCU can also pad the input feature map before storage, making it easy to
finish the convolution operation with one configuration.

10

PE Utilization

• internal layer : 100%

• input layer :

3x3x3 84.38%

5x5x3 93.75%

7x7x3 87.50%

9x9x3 96.43%

11x11x3 82.50%

Type Kernel size PE utilization

internal layer any size 100%

input layer

3x3x3 84.38%

5x5x3 93.75%

7x7x3 87.50%

9x9x3 96.43%

11x11x3 82.50%

11

Conclusion

• Currently implemented on the EAI interface of hummingbird E200 MCU(not verified yet)

• Can be easily transplanted to other RISC-V coprocessor interfaces

• https://github.com/chenhaoc/cnnhwpe/

• Include Matlab Model / C Model / RTL

• Total equivalent gate count : 190K

• Peak performance(16PE): 256xFreq OPS(INT8)/512xFreq OPS(EXP4)

/1024xFreq OPS(Ternary)

• HWPE architecture is flexible and efficient. It is suitable for CNNs acceleration on the
resource-limited devices.

12

https://github.com/chenhaoc/cnnhwpe/

In the Coming Work

• Simulate with EAI interface of hummingbird E200

• software framework

• Looking for volunteers to finish it!

13

Thanks For Your Attention!

14

