HWPE: A CNN Accelerator for RISC-V

Author: Hao Chen , Qiang Chen

What can HWPE do?

HWRPE (CNN Hardware Processing Engines)

A CNN hardware acceleration coprocessor for RISC-V

« Support Convolution layer and RelLU layer

» Transform convolution into matrix multiplication (im2col on the fly)

» Kernel size from 3x3to 11x11

« Support data type int8(uint8), exp4 (4 bits of exponential scale) and ternary

16 dot-product operations of 64 bits operands(8 int8, 16 exp4 or 32 ternary)
per cycle

« Complete a convolution layer operation with one configuration

Convolution & RelLU

Convolution (CONV) Layer

Many
Input fmaps (N) Many
: ”, Output fmaps (N)
filters C..
Al M:...' -
= R
R Y E)
| |11 L1

hq—m—r‘_\
L'_ "
X
'
e
|
v

Rectified Linear Unit

(ReLU)
1
0
-1
-1 0 1
y=max(0, x)

* Fully-Connected layer and pooling layer are still calculated by MCU

Architecture Diagram

Kernel
SRAM O
pAZZA0N\\
« Data fetcher accepts the command from ff \ NN
MCU and fetches data from Feature Map TN NN
SRAM and pushes them into FIFO in the P A e A"k T

PEO| |PE1| |PE2| |[PE3 PE4 |(PES PEG6 PETY

FIFO for T T T T f ! T T

way of im2col

* FIFO is used as a buffer for the left matrix LefMatix | S T N S S S S
. . A
» 16 PE, each one stores a 64 bits right | PES8 PE9 PEa PEb PEc PEd PEe PEf
matrix, performs multiply-accumulate and ~ sfam . Ba Fetcher L U Y A A
stores a column result matrix Feature ! SN\ [/S
Map ~ \\\ N\ S Y
RISCV N\ [/S
« Two kernel SRAMs, each one broadcasts MCU N\ / /
the data of the right matrix to 8 PE aemel

Convolution / Matrix I\/IuItiEIication

R CHICHICHICHICHICHICHICH

Filter - __—__ _—_____ - _ - _——__.

))0 GO G B
» Transform convolution into matrix — o
multiplication 5 v

» Left Matrix : data-fetcher calculate T |

memory address to access data in e
the way of im2col g !
.
« Right Matrix : store the kernel inthe BRI
way of channel priority in advance »«« i

1o
11

12

1o | .
o 1 | ©
12

1o

12

2

1

0

FEFERERIAT AR T AW AN AR AR AN R A :
RS AN FAT X NLCHEJE EAH [) A5 0

1

O O =

HWPE Instructions

« HWPE has only 7 instructions based on custom-0 opcode of RISC-V extended instruction set

RISC-V basic opcode mapping table

Inst[4:2] 000 001 010 011 100 101 110 111
Inst[6:5] (>32h)
00 LOAD LOAD-FP MISC-MEM | OP-IMM AUIPC OP-IMM-32 48b
01 STORE STORE-FP | custom-1 AMO OP LUI 0P-32 64b
10 MADD MSUB NMSUB NMADD OP-FP reserved | custom-2/rv128 48b
11 BRANCH JALR reserved JAL SYSTEM | reserved | custom-3/rvi28 | =80b

HWPE Instructions table

Instruction funct rd xd rsl xsl rs2 XS2
HWPEWTriteFmapAddrReg 1 addr_idx 0 addrl 1 addr2 1
HWPEWT riteCfgReg 2 — 0 cfg 1 cfg 1
HWPEMatrixMac 4 0 W/H count | 1 | H/W_stride 1
HWPEWriteAccReg 8 |AccReg ID| O M(idx) 1 PE_ID 0
HWPEReadAccReg 16 M(idx) 1 |[Acc Reg ID| O PE_ID 0
HWPEReLUMemWriteAccReg | 32 0 M(addr) 1 | AccReg ID 0
HWPEReset 64 —_ 0 —_ 0 — 0 6

What do HWPE Instructions do?

1 | HWPEReset perform a synchronous reset for the HWPE reqisters

2 | HWPEWriteFmapAddrReg co_nflgure 8 base address registers which point to the 8 initial
points of the H-W plane

3 | HWPEWIriteCfgReg configure control registers for convolution

4 | HWPEWTriteAccReg reset or set AccRegs / adds the bias in convolution layers

5 | HWPEMatrixMac start first round of convolution operation

6 | HWPEReadAccReg read the AccRegs back to the MCU general registers

7 | HWPEReLUMemWriteAccReg execute ReLU operation and transfer the 32 bits AccRegs to 8 bits,

then store the results into the specified memory address

How to run CNN: Config Registers

» A convolution task is determined by the configuration registers.

A Convolution Window

W stride 8 Base Address

H stride

Config Registers:
: FmapAddrBase([8]
g H_stride
H count | Q W _stride
- - H_count
a5 e cusl Bunniinund Bunnl snalEuns EEunnt Bunsl nuniinnnblnuniiuns] W_count
: Y ’ W Conv_W _stride
W count ;
- Kernel size
Conv_CH_count

Head address of convolution windows:
B FmapConvAddr[i] = FmapAddrBase[i] + x-W_stride + y-H_stride 0<x<H_count; 0<ys<W_count
SRAM memory access address:
B FmapSramAddr[i] = FmapConvAddr[i] + m-Conv_W _stride + n-Conv_CH_ stride
0<m<Conv_CH_count; 0<n<Kernel_size

8

How to run CNN

1. Configure the configuration registers with HWPEWriteFmapAddrReg & HWPEWriteCfgReg

 select 8 initial points on the H-W plane as base address, each one is the head address in the first convolution
window.

2. Start the first round of convolution operations with HWPEMatrixMac. 128(8x16) output points are calculated.

* In around of computation, the data is fetched to perform dot multiplication. The address of the data is calculated
according to registers Conv_W _stride and Kernel _size Conv_CH_count

« Multiply 8 points in the H-W plane of feature map and16 different kernels to obtain 128 output points.
3. Read the output back to the MCU general register for further operation with HWPEReadAccReg
or execute RelLU operation and transfer the 32 bits output to 8 bits, then store into the specified memory

address with HWPEReLUMemWriteAccReg

4. HWPE continues the next round calculation until the last HWPEReadAccReqg/ HWPEReLUMemWriteAccReg
« Convolution windows move by the size of stride, first in the H direction and then in the W direction.
« Head address of convolution window will be updated according to registers W_stride H_sride H_count W_count
every round. Then the data is fetched to perform dot multiplication in the way of im2col.
5. When calculate H_count*W_count*K_count rounds, the entire convolution task is completed.
« A H-W plane needs H_count*W_count rounds computation.
» For K kernels, the entire convolution task needs H_count*W_count*K _count rounds.(K_count=K/16)

Convolution with One Configuration

* In general, one configuration can complete a convolution layer operation.

 Select 8 initial points and move according to the configuration registers to
cover the entire H-W plane as far as possible.

* |f not, reconfigure the configuration registers and select new 8 initial points
to cover the entire H-W plane.

« MCU can also pad the input feature map before storage, making it easy to
finish the convolution operation with one configuration.

PE Utilization

internal layer any size 100%
3x3x3 84.38%

5x5x3 93.75%

UIPURE LEREF 7X7%3 87 .50%
9x9x3 96.43%

11x11x3 82.50%

11

Conclusion

« Currently implemented on the EAI interface of hummingbird E200 MCU(not verified yet)
« Can be easily transplanted to other RISC-V coprocessor interfaces

https://qgithub.com/chenhaoc/cnnhwpe/
Include Matlab Model / C Model / RTL

Total equivalent gate count : 190K

Peak performance(16PE): 256xFreq OPS(INT8)/512xFreq OPS(EXP4)
/1024xFreq OPS(Ternary)

« HWPE architecture is flexible and efficient. It is suitable for CNNs acceleration on the
resource-limited devices.

12

https://github.com/chenhaoc/cnnhwpe/

In the Coming Work

« Simulate with EAI interface of hummingbird E200
» software framework

* Looking for volunteers to finish it!

Thanks For Your Attention!

