
OpenSBI Deep Dive

Anup Patel <anup.patel@wdc.com>

Western Digital Research

mailto:anup.patel@wdc.com

Outline

• OpenSBI Introduction
– Overview and features

• OpenSBI Platform Specific Support

• OpenSBI Usage
– As a firmware: Reference Firmwares

– As a library: API

• Conclusion

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 3

OpenSBI Introduction

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 4

What is SBI ?

• SBI stands for RISC-V Supervisor Binary Interface
– System call style calling convention between Supervisor (S-mode OS) and Supervisor

Execution Environment (SEE)

• SEE can be:
– A M-mode RUNTIME firmware for OS/Hypervisor running in HS-mode

– A HS-mode Hypervisor for Guest OS running in VS-mode

• SBI calls help:
– Reduce duplicate platform code across OSes (Linux, FreeBSD, etc)

– Provide common drivers for an OS which can be shared by multiple platforms

– Provide an interface for direct access to hardware resources (M-mode only resources)

• Specifications being drafted by the Unix Platform Specification Working group
– Maintain and evolve the SBI specifications

– Currently, SBI v0.1 in-use and SBI v0.2 in draft stage

SEE (M-Mode)
SBI

OS (S-Mode)
ABI ABI

App1 App2

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 5

What is OpenSBI ?

• OpenSBI is an open-source implementation of the RISC-V Supervisor Binary Interface
(SBI) specifications
– Licensed under the terms of the BSD-2 clause license

– Helps to avoid SBI implementation fragmentation

• Aimed at providing RUNTIME services in M-mode
– Typically used in boot stage following ROM/LOADER

• Provides support for reference platforms
– Generic simple drivers included for M-mode to operate

 PLIC, CLINT, UART 8250

– Other platforms can reuse the common code and add needed drivers

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 6

Typical Boot Flow

ROM LOADER
RUNTIME
(OpenSBI)

BOOTLOADER OS

Authenticate & Loads

Jumps

• Runs from On-Chip
ROM

• Uses On-Chip SRAM
• SOC power-up and

clock setup

• Runs from On-Chip SRAM
• DDR initialization
• Loads RUNTIME and

BOOTLOADER

• Runs from DDR
• SOC security setup
• Runtime services as-per

specifications

• Runs from DDR
• Typically open-source
• Filesystem support
• Network booting
• Boot configuration
• Lots of other features

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 7

Important Features

• Layered structure to accommodate various use cases
– Generic SBI library with platform abstraction

• Typically used with external firmware and bootloader

– EDK2 (UEFI implementation), Secure boot working group

– Platform specific library

• Similar to core library but including platform specific drivers

– Platform specific reference firmware

• Three different types of RUNTIME firmware

• Wide range of hardware features supported
– RV32 and RV64

– Misaligned load/store handling

– Missing CSR emulation

– Protects firmware using PMP support

• Well documented using Doxygen

Platform Specific
Reference Firmware

Platform Specific
Library

SBI Library

OpenSBI Layers

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 8

OpenSBI Platform Specific Support

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 9

Why Platform Specific Support ?

• Any SBI implementation requires hardware dependent (platform-specific) methods
– Print a character to console

– Get an input character from console

– Inject an IPI to any given HART subset

– Get value of memory-mapped system timer

– Start timer event for a given HART

– … more to come …

• OpenSBI platform-specific support is implemented as a set of platform-specific hooks in
the form of a struct sbi_platform data structure instance
– Hooks are pointers to platform dependent functions

• Platform independent generic OpenSBI code is linked into a libsbi.a static library

• For every supported platform, we create a libplatsbi.a static library
– libplatsbi.a = libsbi.a + struct sbi_platform instance

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 10

• Supported platforms are available under /platform directory
in OpenSBI source code tree

• Currently:
– qemu/virt: QEMU RISC-V generic virtual machine

(Refer, docs/platform/qemu_virt.md)

– qemu/sifive_u: QEMU SiFive Unleashed virtual machine
(Refer, docs/platform/qemu_sifive_u.md)

– sifive/fu540: SiFive FU540 SOC
(Refer, docs/platform/sifive_fu540.md)

– kendryte/k210: Kendryte K210 SOC

• More to come

Supported Platforms

Platform Specific Reference
Firmwares

OpenSBI Layers

Generic
(platform independent)

Per-platform

libplatsbi.a

libsbi.a

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 11

Adding Support for New Platforms

• To add support for a new <xyz> platform
1. Create directory named <xyz> under /platform directory

2. Create platform configuration file <xyz>/config.mk
 config.mk will provide compiler flags, select common drivers, and select firmware options

 platform/template/config.mk can be used as reference for creating config.mk

3. Create platform objects file <xyz>/objects.mk for listing platform-specific objects to be compiled
 platform/template/objects.mk can be used as reference for creating objects.mk

4. Create platform source file <xyz>/platform.c providing “struct sbi_platform” instance

 platform/template/platform.c can be used as reference for creating platform.c

• The <xyz> platform support directory can also placed outside OpenSBI sources

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 12

Compilation Options for Platform Support

• CROSS_COMPILE environment variable need to be set for cross-compilation

• Build only generic OpenSBI (libsbi.a)
– make

• Build platform-specific OpenSBI (libplatsbi.a) for platform/<xyz> in OpenSBI sources
– make PLATFORM=<xyz>

• Build platform-specific OpenSBI (libplatsbi.a) for <xyz> not part of OpenSBI sources
– make PLAFORM_DIR=<path_to_<xyz>_directory>

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 13

Using OpenSBI As a Firmware

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 14

Reference Firmwares

• OpenSBI provides several types of reference firmware, all platform-specific
– FW_PAYLOAD: Firmware with the next booting stage as a payload

– FW_JUMP: Firmware with static jump address to the next booting stage

– FW_DYNAMIC: Firmware with dynamic information on the next booting stage

• SOC Vendors may choose:
– Use one of OpenSBI reference firmwares as their M-mode RUNTIME firmware

– Build M-mode RUNTIME firmware from scratch with OpenSBI as library

– Extend existing M-mode firmwares (U-Boot_M_mode/EDK2) with OpenSBI as library

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 15

FW_PAYLOAD

• OpenSBI firmware with the next booting stage as a payload
– Any S-mode BOOTLOADER/OS image as the payload to OpenSBI FW_PAYLOAD

– Allows overriding device tree blob (i.e. DTB)

– Very similar to BBL hence fits nicely in existing boot-flow of SiFive Unleashed board

• Down-side:
– We have to re-create FW_PAYLOAD image whenever OpenSBI or the BOOTLOADER (U-Boot) changes

– No mechanism to pass parameters from previous booting stage (i.e. LOADER) to FW_PAYLOAD

FW_PAYLOAD

ROM
(M-mode)

(ZSBL)

LOADER
(M-mode)

(FSBL)

RUNTIME
(M-mode)
(OpenSBI)

OS
(S-mode)

(Linux)

Loads
Jumps

BOOTLOADER
(S-mode)
(U-Boot)

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 16

FW_JUMP

• OpenSBI firmware with a fixed jump address to the next booting stage
– Next stage booting stage (i.e. BOOTLADER) and FW_JUMP are loaded by the previous booting stage

(i.e. LOADER)

– Very useful for QEMU because we can use pre-compiled FW_JUMP

• Down-side:
– Previous booting stage (i.e. LOADER) has to load next booting stage (i.e. BOOTLADER) at a fixed location

– No mechanism to pass parameters from pervious booting stage (i.e. LOADER) to FW_JUMP

ROM
(M-mode)

(ZSBL)

LOADER
(M-mode)

(U-Boot_SPL/Coreboot/QEMU)

RUNTIME
(M-mode)

(FW_JUMP)

BOOTLOADER
(S-mode)
(U-Boot)

OS
(S-mode)

(Linux)

Loads
Jumps

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 17

FW_DYNAMIC

struct fw_dynamic_info

unsigned long magic

unsigned long version

unsigned long next_addr

unsigned long next_mode

unsigned long options

• OpenSBI firmware with dynamic information about the next booting
stage
– The next stage booting stage (i.e. BOOTLADER) and FW_DYNAMIC are loaded by

the previous booting stage (i.e. LOADER)

– The previous booting stage (i.e. LOADER) passes the location of struct
fw_dynamic_info to FW_DYNAMIC via ‘a2’ register

• Down-side:
– Previous booting stage (i.e. LOADER) needs to be aware of struct fw_dynamic_info

ROM
(M-mode)

(ZSBL)

LOADER
(M-mode)

(U-Boot_SPL/Coreboot/QEMU)

RUNTIME
(M-mode)

(FW_DYNAMIC)

BOOTLOADER
(S-mode)
(U-Boot)

OS
(S-mode)

(Linux)

Loads
Jumps

struct
fw_dynamic_info

Passed via ‘a2’ register

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 18

Using OpenSBI As a Library

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 19

Typical use as Library

ROM
(M-mode)

(ZSBL)

BOOTLOADER
(S-mode)

(GRUB/U-Boot)

OS
(S-mode)

(Linux)

External Firmware
(EDK2)

RUNTIME
(M-mode)
(OpenSBI)

LOADER
(M-mode)

Loads

Jumps

• External M-mode firmware linked to OpenSBI library

• Example: open-source EDK2 (UEFI implementation) OpenSBI integration
– HPE leading this effort (Ongoing)

– OpenSBI built with EDK2 build environment

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 20

Constraints on using OpenSBI Library

• Same GCC target options (i.e. -march, -mabi, and -mcmodel) need to be used for the
external firmware and OpenSBI sources

• External firmware must create per-HART non-overlapping:
1. Program Stack

2. OpenSBI scratch space (i.e. struct sbi_scratch instance with extra space above)

• Two constraints in calling any OpenSBI functions from external firmware:
1. MSCRATCH CSR of calling HART must be set to its own OpenSBI scratch space

2. SP register (i.e. the stack pointer) of calling HART must be set to its own stack

• External firmware must also ensure that:
– Interrupts are disabled in the MSTATUS and MIE CSRs when calling sbi_init()

– sbi_init() is called for each HART that is powered-up at boot-time or in response to a CPU hotplug event

– sbi_trap_handler() is called for M-mode interrupts and M-mode traps

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 21

Conclusion

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 22

Important Facts

• OpenSBI provides only RUNTIME firmware/library

• OpenSBI platform specific support makes OpenSBI easily extensible for new SOCs

• OpenSBI reference firmwares:
– Are optional and SOC vendors can choose to implement their own

– Don’t enforce any particular boot-flow

6/12/2019© 2019 Western Digital Corporation or its affiliates. All rights reserved. 23

On-Going and Future Work

• SBI specifications
– SBI v0.2 specification

– SBI v0.2 HART power management extension

– SBI v0.2 remote fences extension (fence.i, sfence.vma, hfence.gvma, and hfence.bvma)

• OpenSBI
– RISC-V hypervisor extension support (We have a demo here !!!)

– SBI v0.2 support

– SBI v0.2 HART power management support

– SBI v0.2 remote fences support

– Support other M-mode bootloaders such as U-Boot_SPL/Coreboot

– Support RISC-V EDK2 integration

– More platforms support

• Need hardware !

© 2019 Western Digital Corporation or its affiliates. All rights reserved. 6/12/2019

