
Chapter 18

Calling Convention

This chapter describes the C compiler standards for RV32 and RV64 programs and two calling
conventions: the convention for the base ISA plus standard general extensions (RV32G/RV64G),
and the soft-float convention for implementations lacking floating-point units (e.g., RV32I/RV64I).

Implementations with ISA extensions might require extended calling conventions.

18.1 C Datatypes and Alignment

Table 18.1 summarizes the datatypes natively supported by RISC-V C programs. In both RV32
and RV64 C compilers, the C type int is 32 bits wide. longs and pointers, on the other hand, are
both as wide as a integer register, so in RV32, both are 32 bits wide, while in RV64, both are 64
bits wide. Equivalently, RV32 employs an ILP32 integer model, while RV64 is LP64. In both RV32
and RV64, the C type long long is a 64-bit integer, float is a 32-bit IEEE 754-2008 floating-point
number, double is a 64-bit IEEE 754-2008 floating-point number, and long double is a 128-bit
IEEE floating-point number.

The C types char and unsigned char are 8-bit unsigned integers and are zero-extended when
stored in a RISC-V integer register. unsigned short is a 16-bit unsigned integer and is zero-
extended when stored in a RISC-V integer register. signed char is an 8-bit signed integer and is
sign-extended when stored in a RISC-V integer register, i.e. bits (XLEN-1)..7 are all equal. short
is a 16-bit signed integer and is sign-extended when stored in a register.

In RV64, 32-bit types, such as int, are stored in integer registers as proper sign extensions of their
32-bit values; that is, bits 63..31 are all equal. This restriction holds even for unsigned 32-bit types.

The RV32 and RV64 C compiler and compliant software keep all of the above datatypes naturally
aligned when stored in memory.

89



90 Volume I: RISC-V User-Level ISA V2.1draft

C type Description Bytes in RV32 Bytes in RV64
char Character value/byte 1 1
short Short integer 2 2
int Integer 4 4
long Long integer 4 8
long long Long long integer 8 8
void* Pointer 4 8
float Single-precision float 4 4
double Double-precision float 8 8
long double Extended-precision float 16 16

Table 18.1: C compiler datatypes for base RISC-V ISA.

18.2 RVG Calling Convention

The RISC-V calling convention passes arguments in registers when possible. Up to eight integer
registers, a0–a7, and up to eight floating-point registers, fa0–fa7, are used for this purpose.

If the arguments to a function are conceptualized as fields of a C struct, each with pointer align-
ment, the argument registers are a shadow of the first eight pointer-words of that struct. If
argument i < 8 is a floating-point type, it is passed in floating-point register fai; otherwise, it is
passed in integer register ai. However, floating-point arguments that are part of unions or array
fields of structures are passed in integer registers. Additionally, floating-point arguments to vari-
adic functions (except those that are explicitly named in the parameter list) are passed in integer
registers.

Arguments smaller than a pointer-word are passed in the least-significant bits of argument registers.
Correspondingly, sub-pointer-word arguments passed on the stack appear in the lower addresses of
a pointer-word, since RISC-V has a little-endian memory system.

When primitive arguments twice the size of a pointer-word are passed on the stack, they are
naturally aligned. When they are passed in the integer registers, they reside in an aligned even-odd
register pair, with the even register holding the least-significant bits. In RV32, for example, the
function void foo(int, long long) is passed its first argument in a0 and its second in a2 and
a3. Nothing is passed in a1.

Arguments more than twice the size of a pointer-word are passed by reference.

The portion of the conceptual struct that is not passed in argument registers is passed on the
stack. The stack pointer sp points to the first argument not passed in a register.

Values are returned from functions in integer registers a0 and a1 and floating-point registers fa0
and fa1. Floating-point values are returned in floating-point registers only if they are primitives
or members of a struct consisting of only one or two floating-point values. Other return values
that fit into two pointer-words are returned in a0 and a1. Larger return values are passed entirely
in memory; the caller allocates this memory region and passes a pointer to it as an implicit first
parameter to the callee.



Copyright © 2010–2014, The Regents of the University of California. All rights reserved. 91

In the standard RISC-V calling convention, the stack grows downward and the stack pointer is
always kept 16-byte aligned.

In addition to the argument and return value registers, seven integer registers t0–t6 and twelve
floating-point registers ft0–ft11 are temporary registers that are volatile across calls and must be
saved by the caller if later used. Twelve integer registers s0–s11 and twelve floating-point registers
fs0–fs11 are preserved across calls and must be saved by the callee if used. Table 18.2 indicates
the role of each integer and floating-point register in the calling convention.

Register ABI Name Description Saver
x0 zero Hard-wired zero —
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5–7 t0–2 Temporaries Caller
x8 s0/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10–11 a0–1 Function arguments/return values Caller
x12–17 a2–7 Function arguments Caller
x18–27 s2–11 Saved registers Callee
x28–31 t3–6 Temporaries Caller
f0–7 ft0–7 FP temporaries Caller
f8–9 fs0–1 FP saved registers Callee
f10–11 fa0–1 FP arguments/return values Caller
f12–17 fa2–7 FP arguments Caller
f18–27 fs2–11 FP saved registers Callee
f28–31 ft8–11 FP temporaries Caller

Table 18.2: RISC-V calling convention register usage.

18.3 Soft-Float Calling Convention

The soft-float calling convention is used on RV32 and RV64 implementations that lack floating-
point hardware. It avoids all use of instructions in the F, D, and Q standard extensions, and hence
the f registers.

Integral arguments are passed and returned in the same manner as the RVG convention, and the
stack discipline is the same. Floating-point arguments are passed and returned in integer registers,
using the rules for integer arguments of the same size. In RV32, for example, the function double

foo(int, double, long double) is passed its first argument in a0, its second argument in a2

and a3, and its third argument by reference via a4; its result is returned in a0 and a1. In RV64,
the arguments are passed in a0, a1, and the a2-a3 pair, and the result is returned in a0.

The dynamic rounding mode and accrued exception flags are accessed through the routines provided



92 Volume I: RISC-V User-Level ISA V2.1draft

by the C99 header fenv.h.


