lowRISC - an open-source RISC-V SoC

Alex Bradbury, lowRISC/University of Cambridge
asb@lowrisc.org

@asbradbury @lowRISC
RISC-V workshop 2015/01/14

mailto:asb@lowrisc.org

Beginnings and motivation

e Aim to produce volume silicon for a complete
open-source SoC
e Started Summer 2014 as a non-profit project
e Previous experience with Raspberry Pi
e Why?
o Teaching and research

o Demand from industry
o Startups and innovation

The opportunity

Clean slate design

Technology scaling is slowing

Cores are free and customisable

Free from commercial influences and
release cycles. Aim to maximise functionality
(no product range!)

e Open source community

Approach

e Simple reusable components rather than
single-purpose solutions to problems

e Derive from Berkeley’'s Rocket RISC-V core

e EXxpose interesting new features (particularly
security)

e Develop out in the open as much as possible

e Multiple volume silicon runs

e Initial volume target: a low-cost development
board. ‘Raspberry Pi for grownups’

System diagram for test chip

/O
(r ™ g a [1/O shim (clks, FIFOs.SerDes, ..)]
RISC-V pipeline RISC-V pipeline A At
\ - \ - Y y t

Minion Minion Minion

I$] D$ 1$ [D$ (RISC-V) [(RISC-V)] ses (RISC-V)
\J ./ \

r'\
$ $ 3 :
? Coherent Network G 1/O Network
I

\

) : _ $
e [JB (&][=]

’ I/O 1/0
Tag Cache

Memory Controller

v

Off-Chip Memory

Tagged memory

Associate tags (metadata) with each
memory location

Initial motivation is prevention of control-flow
hijacking attacks (still a major attack surface)

o Provide protection for code pointers. i.e. set tag bit =
read-only

Low overhead implementation. Tag bits
copied to L1/L2 and on-chip tag cache
Exploring 2-bit tags (~3% storage overhead)

Tagged memory - beyond security

Infinite memory watchpoints

Better version of traditional canaries
Garbage collection

Accelerate debug/performance tools (e.g.
Google *Sanitizer)

Per-word locks or full/empty bits for
synchronisation

e Mark valid targets of indirect branches

System diagram for test chip

/O
(r ™ g a [1/O shim (clks, FIFOs.SerDes, ..)]
RISC-V pipeline RISC-V pipeline A At
\ - \ - Y y t

Minion Minion Minion

I$] D$ 1$ [D$ (RISC-V) [(RISC-V)] ses (RISC-V)
\J ./ \

r'\
$ $ 3 :
? Coherent Network G 1/O Network
I

\

) : _ $
e [JB (&][=]

’ I/O 1/0
Tag Cache

Memory Controller

v

Off-Chip Memory

Minion cores

e Motivation

o Soft peripherals
o |/O preprocessing/filtering, wake-up main cores

o Offload fine-grain tasks, e.g. security policies,
debug, performance monitoring

o Off-load tasks from main cores
o Secure, isolated execution

e Not a new idea

o CDC6600, TI PRUs, Ubicom IP3000, XMOS, NXP
| PC4370 Motorola (eTPU

Minion cores - architecture

e Predictable timing
e |/O ‘'shim’
o Logic to aid shift in/out, parallel load, buffer data,
provide clocks, assign pins to minions
e |[ow-latency path between main cores and
minions
o May carry cache misses, branch mispredicts

Roadmap

e Q12015 - Tagged memory (FPGA)

e Q2 2015 - Minion cores (FPGA)

e End 2015 - Dual-core test chip with
iIntegrated memory PHY, minions. 28 or
40nm

e First volume run 2016/2017

Next steps

Further software work

Documentation

Verification, formal methods

Larger scale benchmarks. “Run Linux well”
Programmable interrupt controller,
performance counters, debug...

Cathedral and the bazaar

e \Want to be a truly open-source project

e Case 1: source is open, but development
happens behind closed doors

e Case 2: development happens in the open,
but nobody else chooses to take part

e Case 3. open source + open development
with a community of external contributors

Final notes

e See www.lowrisc.org for

o Announcement list
o Discussion list

o Memo with many more details on tagged memory
and minion cores

e Keen to receive feedback, explore
collaborations etc. asb@lowrisc.org
e |lowRISC at FOSDEM 2015 (31st Jan,

Brussels)

http://www.lowrisc.org
mailto:asb@lowrisc.org

