
lowRISC - an open-source RISC-V SoC

Alex Bradbury, lowRISC/University of Cambridge
 asb@lowrisc.org

@asbradbury @lowRISC
RISC-V workshop 2015/01/14

mailto:asb@lowrisc.org


Beginnings and motivation
● Aim to produce volume silicon for a complete 

open-source SoC
● Started Summer 2014 as a non-profit project
● Previous experience with Raspberry Pi
● Why?

○ Teaching and research
○ Demand from industry
○ Startups and innovation



The opportunity

● Clean slate design
● Technology scaling is slowing
● Cores are free and customisable
● Free from commercial influences and 

release cycles. Aim to maximise functionality 
(no product range!)

● Open source community



Approach
● Simple reusable components rather than 

single-purpose solutions to problems
● Derive from Berkeley’s Rocket RISC-V core
● Expose interesting new features (particularly 

security)
● Develop out in the open as much as possible
● Multiple volume silicon runs
● Initial volume target: a low-cost development 

board. ‘Raspberry Pi for grownups’



System diagram for test chip



Tagged memory
● Associate tags (metadata) with each 

memory location
● Initial motivation is prevention of control-flow 

hijacking attacks (still a major attack surface)
○ Provide protection for code pointers. i.e. set tag bit = 

read-only
● Low overhead implementation. Tag bits 

copied to L1/L2 and on-chip tag cache
● Exploring 2-bit tags (~3% storage overhead)



Tagged memory - beyond security

● Infinite memory watchpoints
● Better version of traditional canaries
● Garbage collection
● Accelerate debug/performance tools (e.g. 

Google *Sanitizer)
● Per-word locks or full/empty bits for 

synchronisation
● Mark valid targets of indirect branches



System diagram for test chip



Minion cores
● Motivation

○ Soft peripherals
○ I/O preprocessing/filtering, wake-up main cores
○ Offload fine-grain tasks, e.g. security policies, 

debug, performance monitoring
○ Off-load tasks from main cores
○ Secure, isolated execution

● Not a new idea
○ CDC6600, TI PRUs, Ubicom IP3000, XMOS, NXP 

LPC4370, Motorola (e)TPU



Minion cores - architecture

● Predictable timing
● I/O ‘shim’

○ Logic to aid shift in/out, parallel load, buffer data, 
provide clocks, assign pins to minions

● Low-latency path between main cores and 
minions
○ May carry cache misses, branch mispredicts



Roadmap

● Q1 2015 - Tagged memory (FPGA)
● Q2 2015 - Minion cores (FPGA)
● End 2015 - Dual-core test chip with 

integrated memory PHY, minions. 28 or 
40nm

● First volume run 2016/2017



Next steps

● Further software work
● Documentation
● Verification, formal methods
● Larger scale benchmarks. “Run Linux well”
● Programmable interrupt controller, 

performance counters, debug...



Cathedral and the bazaar

● Want to be a truly open-source project
● Case 1: source is open, but development 

happens behind closed doors
● Case 2: development happens in the open, 

but nobody else chooses to take part
● Case 3: open source + open development 

with a community of external contributors



Final notes
● See www.lowrisc.org for

○ Announcement list
○ Discussion list
○ Memo with many more details on tagged memory 

and minion cores
● Keen to receive feedback, explore 

collaborations etc. asb@lowrisc.org
● lowRISC at FOSDEM 2015 (31st Jan, 

Brussels) 

http://www.lowrisc.org
mailto:asb@lowrisc.org

