v RISC

RISC-V Compressed Extension

Andrew Waterman, Yunsup Lee, David Patterson,
and Krste Asanovié
{waterman |vyunsup|pattrsn|krste}

@deecs .berkeley.edu
http://www.riscv.orq
2"d RISC-V Workshop, Berkeley, CA
June 29, 2015

: 4 “C": Compressed Instruction Extension
RISC

= Compressed code important for:
- low-end embedded to save static code space
— high-end commercial workloads to reduce cache footprint

= Standard extension (released 5/28/15) adds 16-bit

compressed instructions with 5- or 6-bit opcode and

— 2-addresses with all 32 registers
— 1-address with all 32 registers & 5-bit immediate
— 2-addresses with popular 8 registers & 5-bit immediate
— 1-address with popular 8 registers & 8-bit immediate
— 11-bit immediate

= Each Cinstruction expands to single base | instruction
— Compiler can be oblivious to C extension
— Assembly lang programmers can also ignore C extension

» “50% instructions = ~25% reduction in code size

Variable-Length Encoding

XXXXXXXXXXXXXXaa

XXXXXXXXXXXXXXXX

XXXXXXXXXXXbbb1l1l

- - XXXX

XXXXXXXXXXXXXXXX

xxxxxxxxxx011111

- XXXX

XXXXXXXXXXXXXXXX

xxxxxxxxx0111111

- - XXXX

XXXXXXXXXXXXXXXX

xnnnxxxxx1111111

< - o XXXX

XXXXXXXXXXXXXXXX

x111xxxxx1111111

Byte Address: base+4

base+2

base

16-bit (aa # 11)

32-bit (bbb # 111)

48-bit

64-bit

(804+16*nnn)-bit, nnon#£111

Reserved for >192-bits

= Extensions can use any multiple of 16 bits as
instruction length
= Branches/Jumps target 16-bit boundaries even in
fixed 32-bit base

— Consumes 1 extra bit of jump/branch address

: y Prior Work

RISC

= Retroactively added 16-bit instructions to RISCs ISAs
of 1980s to reduce code size for embedded apps

= ARM Thumb: All instructions 16-bits
— New [SAs
— Mode change to use ARMv7 instructions

= ARM Thumb?2 and MIPS16: Mix of 16-bit and 32-bit

iInstructions

— New [ISAs (different from ARMVv7 and MIPS32)
— Mode change to use ARMvV7 instructions

: y Methodology

RISC

* Implement proposed instruction in assembler
= Measure impact of proposed instruction on static
code size using SPEC2006 and other codes bases

= Discarded if little benefit, e.g.,

— 3 register arithmetic/logic operations
- ARMv7-like “swizzling” / table lookup of constants

= Discarded if opportunity costs too high, e.g.,
— Load/store byte/halfword

— Help a little, but takes up too much opcode space vs. benefits
— Load/store floating-point single/double
— Lots of opcode space again vs. benefits
— Only helps FP programs vs. all programs
— RVF optional so only helps some RV computers vs. all RV computers

: y RVC Overview

RISC

= 15t 10 RVC instructions ~14% code reduction

= 27d 10 RVC instructions ~6% more code reduction

= 314 10 RVC instructions ~5% more code reduction

= Draft describes 24 more “extended” RVC instructions

that get ~1% more code reduction

— Maybe more compression for other compilers than gcc,
other languages than C, assembly language programming?
— Please comment on “standard” vs. “extended” RVC

= Recent results on compiler optimization to reduce
size of register save/restore code on procedure
entry/exit

: A RVC Reg-Reg Operations

RISC

12 11 76 21

funct4 rd /rsl rs2 op

4 5} 5 2
= Register destination and 15t source identical
Reg[rd] = Reg[rd] op Reg[rs2] (CR format)

» C.MV # move

—Expands to add rd, x0, rs2
= C.ADD # add

—Expands to add rd, rd, rs2
= C.ADDW # add word

—Expands to addw rd, rd, rs2
» C.SUB # subtract

—Expandsto sub rd, rd, rs2
= 7.4% of code

:A

RISC

13 12

Load/Store SP + imm field

11

76

21

funct3

1mim

rd

imm

3

= C.LWSP, C.LDSP, C.LQSP

1

5

5

» Load Word/Double word/Quad word from
Stack Pointer + imm™{4|8|16} to Reg[rd] (Cl format)
—Expandsto 1{w|d|g} rd,

o 3 5% of code (10.9% total)

13 12

76

offset (x2)

21

funct3

imm

rs2

3

= C.SWSP,C.SDSP, C.SQSP

6

5

= Store Word/Double word/Quad word to

Stack Pointer + imm™*{4|8|16} from Reg[rs2] (CSS)
= Expandstos{w|d|g} rs2,
= 2.8% of code (13.7% total)

offset (x2)

: y Load/Store Reg + imm field

RISC

13 12 10 9 76 54 21

funct3 imm rs1’ imm rd’ op

3 3 3 2 3 2
C.LW,C.LD, C.LOQ

» Load Word/Double word/Quad word from
Reg[rs1’] + imm™{4|8]|16} to Reg[rd’] (CL format)
—-Expandstol{w|d|g} rd’, offset(rsl’)
o 2 2% of code (15.9% total)

13 12 10 9 76 5 4 21

funct3 imm rs1’ imm rs2’ op

3 3 3 2 3 2
=C.SW,C.SD,C.S0Q

= Store Word/Double word/Quad word to
Reg[rs1’] + imm*{4|8|16} from Reg[rs2’] (CS format)
= Expandstos{w|d|g} rd’, offset(rsl’)
= 0.7% of code (16.6% total)

: y Load Constant

RISC

13 12 11 76 21 0
funct3 imm 5] rd/rsl imm|[4:0] op
3 1 5! o} 2

»C.LI # load immediate
Reg[rd] = imm (Cl format)
—Expandsto addi rd, x0, nzimm[5:0]
= 1.6% of code (18.2% total)
» C.LUI # load upper immediate
Reg[rd] = imm*4096 (Cl format)
—Expandsto 1lui rd, nzimm[17:12]
= 0.4% of code (18.6% total)

10

: y Add Immediate Operations

RISC
13 12 11 76 21
funct3 imm 5] rd/rsl imm|[4:0]
3 1 5! o}
= C.ADDI

= Add Immediate
Reg[rd] = Reg[rd] + imm (CI format)
—Expandsto addi rd, rd, nzimm[5:0]
= C.ADDIW
= Add Immediate Word
Reg[rd] = Reg[rd] + imm (Cl format)
—Expands to addiw rd, rd, nzimm[5:0]
= 1.8% of code (20.4% total)

: 4 Remaining 10 RVC instructions

RISC (4.9% of code, 25.2% total)
= C.BEQZ # branch on equal to zero
= C.BNEZ # branch on not equal to zero
=C.J # jump
= C.JR # jump register
»C.JAL # jump and link

= C.JALR # jump and link register
»C.SLLI # shift left logical

= C.ADDI16SP
— SP = SP + sign-extended Immediate scaled by 16

= C.ADDI4SPN
— Reg = SP + zero-extended Immediate scaled by 4

= C.EBREAK
— Environment break, for debuggers

12

: 4 Extended RVC another ~1% using gcc
risc . (Please opine whether to add extended)

24 Extended RVC Instructions
C.ADD3 C.SLL
C.AND3 3 Registers C.SLLIW
C.OR3 (0.34%) C.SLLR
C.SUB3 C.SRA Shifts
C.ADDIN C.SRAI (0.24%)
C .ANDIN 2 Registers & Imm C.SRIL
C.ORIN LT3 C.SRLI
C.XORIN C.SRLR
C.SLT C.BGEZ Branches
C.SLTR Comparisons C.BLT? (0.10%)
C.SLTU (AT C.ANDI Logical Imm (0.11%)
C.SLTUR C.XOR Logical (0.02%)

RISC
32-bit Address
180%
160%
140% — 128%434% s anor
120%
120% +— - .,
100% [190% I - 97%
80%]
O 9 o0
oSV A’b
Qg Q‘® ‘{\0&

SPECint2006 Compression Results
(relative to “standard” RVC)

64-bit Address

124% 123%

RV64C RV64 X86-64 ARMv8 MIPS64

= MIPS delayed branch slots increase code size
= RV64C only 64-bit address ISA with 16-bit instructions
= Thumb?2 only 32-bit address ISA smaller than RV32C

14

: y Load/Store Multiple?

RISC
= Thumb?2 has load/store multiple (LM/SM)
— LM/SM violates 1-to-1 mapping of RVC to RVI instructions
= Save/restore registers on procedure entry/exit using
LM/SM reduces code size
= When prefer smaller code over speed, instead of
in-lined loads and stores, call procedures to save/

restore registers on procedure entry/exit
— gcc allocates registers in order, so just need number of
registers to save/restore
— Candoin just 1 JAL for save + 1 Jump for restore by
jumping into middle of save/restore procedures to
determine number of registers to save or restore

= RVC code size shrinks another ~5%

15

180% -

160% -

140%

32-bit Address
————————————————————————————— 173%--——-180% -

120% -

100% -

SPECint2006 with save/restore optimization
(relative to “standard” RVC)

64-bit Address

80% -

RV64C RV64 X86-64 ARMv8 MIPS64

v
= RISC-V now smallest ISA for 32- and 64-bit addresses
— Average 34% smaller for RV32C, 42% smaller for RV64C

16

Questions?

17

