
The RISC-V Compressed Instruction Set Manual
Version 1.9

Warning! This draft specification may change before being
accepted as standard, so implementations made to this draft

specification might not conform to the future standard.

Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanović
CS Division, EECS Department, University of California, Berkeley
{waterman|yunsup|pattrsn|krste}@eecs.berkeley.edu

November 5, 2015

This document is also available as Technical Report UCB/EECS-2015-209.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-209.html

2 RISC-V Compressed ISA V1.9

1.1 Introduction

This excerpt from the RISC-V User-Level ISA Specification describes the current draft proposal
for the RISC-V standard compressed instruction set extension, named “C”, which reduces static
and dynamic code size by adding short 16-bit instruction encodings for common operations. The
C extension can be added to any of the base ISAs (RV32, RV64, RV128), and we use the generic
term “RVC” to cover any of these. Typically, 50%–60% of the RISC-V instructions in a program
can be replaced with RVC instructions, resulting in a 25%–30% code-size reduction.

We believe this draft represents the close to final design for RV32C and RV64C (it seems premature
to freeze R128C), though we are requesting one more round of comments, hence the 1.9 revision
number. Please send your comments to the isa-dev mailing list at isa-dev@lists.riscv.org.

1.2 Overview

RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V
instructions when:

• the immediate or address offset is small, or

• one of the registers is the zero register (x0), the ABI link register (x1), or the ABI stack
pointer (x2), or

• the destination register and the first source register are identical, or

• the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension
allows 16-bit instructions to be freely intermixed with 32-bit instructions, with the latter now able
to start on any 16-bit boundary.

Removing the 32-bit alignment constraint on the original 32-bit instructions allows significantly
greater code density.

The compressed instruction encodings are mostly common across RV32C, RV64C, and RV128C,
but as shown in Table 1.3, a few opcodes are used for different purposes depending on base ISA
width. For example, the wider address-space RV64C and RV128C variants require additional
opcodes to compress loads and stores of 64-bit integer values, while RV32C uses the same opcodes
to compress loads and stores of single-precision floating-point values. Similarly, RV128C requires
additional opcodes to capture loads and stores of 128-bit integer values, while these same opcodes
are used for loads and stores of double-precision floating-point values in RV32C and RV64C. If the
C extension is implemented, the appropriate compressed floating-point load and store instructions
must be provided whenever the relevant standard floating-point extension (F and/or D) is also
implemented. In addition, RV32C includes a compressed jump and link instruction to compress
short-range subroutine calls, where the same opcode is used to compress ADDIW for RV64C and
RV128C.

Double-precision loads and stores are a significant fraction of static and dynamic instructions,
hence the motivation to include them in the RV32C and RV64C encoding.

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 3

Although single-precision loads and stores are not a significant source of static or dynamic
compression for benchmarks compiled for the currently supported ABIs, for microcontrollers
that only provide hardware single-precision floating-point units and have an ABI that only sup-
ports single-precision floating-point numbers, the single-precision loads and stores will be used
at least as frequently as double-precision loads and stores in the measured benchmarks. Hence,
the motivation to provide compressed support for these in RV32C.

Short-range subroutine calls are more likely in small binaries for microcontrollers, hence the
motivation to include these in RV32C.

Although reusing opcodes for different purposes for different base register widths adds some
complexity to documentation, the impact on implementation complexity is small even for designs
that support multiple base ISA register widths. The compressed floating-point load and store
variants use the same instruction format with the same register specifiers as the wider integer
loads and stores.

RVC was designed under the constraint that each RVC instruction expands into a single 32-bit
instruction in either the base ISA (RV32I/E, RV64I, or RV128I) or the F and D standard extensions
where present. Adopting this constraint has two main benefits:

• Hardware designs can simply expand RVC instructions during decode, simplifying verification
and minimizing modifications to existing microarchitectures.

• Compilers can be unaware of the RVC extension and leave code compression to the assembler
and linker, although a compression-aware compiler will generally be able to produce better
results.

We felt the multiple complexity reductions of a simple one-one mapping between C and base
IFD instructions far outweighed the potential gains of a slightly denser encoding that added
additional instructions only supported in the C extension, or that allowed encoding of multiple
IFD instructions in one C instruction.

It is important to note that the C extension is not designed to be a stand-alone ISA, and is meant
to be used alongside a base ISA.

Variable-length instruction sets have long been used to improve code density. For example, the
IBM Stretch [2], developed in the late 1950s, had an ISA with 32-bit and 64-bit instructions,
where some of the 32-bit instructions were compressed versions of the full 64-bit instructions.
Stretch also employed the concept of limiting the set of registers that were addressable in some
of the shorter instruction formats, with short branch instructions that could only refer to one
of the index registers. The later IBM 360 architecture [1] supported a simple variable-length
instruction encoding with 16-bit, 32-bit, or 48-bit instruction formats.

In 1963, CDC introduced the Cray-designed CDC 6600 [3], a precursor to RISC architec-
tures, that introduced a register-rich load-store architecture with instructions of two lengths,
15-bits and 30-bits. The later Cray-1 design used a very similar instruction format, with 16-bit
and 32-bit instruction lengths.

The initial RISC ISAs from the 1980s all picked performance over code size, which was
reasonable for a workstation environment, but not for embedded systems. Hence, both ARM
and MIPS subsequently made versions of the ISAs that offered smaller code size by offering an
alternative 16-bit wide instruction set instead of the standard 32-bit wide instructions. The com-
pressed RISC ISAs reduced code size relative to their starting points by about 25–30%, yielding
code that was significantly smaller than 80x86. This result surprised some, as their intuition
was that the variable-length CISC ISA should be smaller than RISC ISAs that offered only 16-bit
and 32-bit formats.

4 RISC-V Compressed ISA V1.9

Since the original RISC ISAs did not leave sufficient opcode space free to include these
unplanned compressed instructions, they were instead developed as complete new ISAs. This
meant compilers needed different code generators for the separate compressed ISAs. The first
compressed RISC ISA extensions (e.g., ARM Thumb and MIPS16) used only a fixed 16-bit in-
struction size, which gave good reductions in static code size but caused an increase in dynamic
instruction count, which led to lower performance compared to the original fixed-width 32-bit
instruction size. This led to the development of a second generation of compressed RISC ISA
designs with mixed 16-bit and 32-bit instruction lengths (e.g., ARM Thumb2, microMIPS, Pow-
erPC VLE), so that performance was similar to pure 32-bit instructions but with significant
code size savings. Unfortunately, these different generations of compressed ISAs are incompati-
ble with each other and with the original uncompressed ISA, leading to significant complexity in
documentation, implementations, and software tools support.

Of the commonly used 64-bit ISAs, only PowerPC and microMIPS currently supports a
compressed instruction format. It is surprising that the most popular 64-bit ISA for mobile
platforms (ARM v8) does not include a compressed instruction format given that static code
size and dynamic instruction fetch bandwidth are important metrics. Although static code size
is not a major concern in larger systems, instruction fetch bandwidth can be a major bottleneck
in servers running commercial workloads, which often have a large instruction working set.

Benefiting from 25 years of hindsight, RISC-V was designed to support compressed instruc-
tions from the outset, leaving enough opcode space for RVC to be added as a simple extension
on top of the base ISA (along with many other extensions). The philosophy of RVC is to reduce
code size for embedded applications and to improve performance and energy-efficiency for all
applications due to fewer misses in the instruction cache. Waterman shows that RVC fetches
25%-30% fewer instruction bits, which reduces instruction cache misses by 20%-25%, or roughly
the same performance impact as doubling the instruction cache size [4].

1.3 Compressed Instruction Formats

Table 1.1 shows the eight compressed instruction formats. CR, CI, and CSS can use any of the
32 RVI registers, but CIW, CL, CS, and CB are limited to just 8 of them. Table 1.2 lists these
popular registers, which correspond to registers x8 to x15. Note that there is a separate version of
load and store instructions that use the stack pointer as the base address register, since saving to
and restoring from the stack are so prevalent, and that they use the CI and CSS formats to allow
access to all 32 data registers. CIW supplies an 8-bit immediate for the ADDI4SPN instruction.

The RISC-V ABI was changed to make the frequently used registers map to registers x8–x15.
This simplifies the decompression decoder by having a contiguous naturally aligned set of register
numbers, and is also compatible with the RV32E subset base specification, which only has 16
integer registers.

Compressed register-based floating-point loads and stores also use the CL and CS formats respec-
tively, with the eight registers mapping to f8 to f15.

The standard RISC-V calling convention maps the most frequently used floating-point registers
to registers f8 to f15, which allows the same register decompression decoding as for integer
register numbers.

The formats were designed to keep bits for the two register source specifiers in the same place in all
instructions, while the destination register field can move. When the full 5-bit destination register
specifier is present, it is in the same place as in the 32-bit RISC-V encoding. Where immediates
are sign-extended, the sign-extension is always from bit 12. Immediate fields have been scrambled,
as in the base specification, to reduce the number of immediate muxes required.

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 5

The immediate fields are scrambled in the instruction formats instead of in sequential order so
that as many bits as possible are in the same position in every instruction, thereby simplify-
ing implementations. For example, immediate bits 17—10 are always sourced from the same
instruction bit positions. Five other immediate bits (5, 4, 3, 1, and 0) have just two source
instruction bits, while four (9, 7, 6, and 2) have three sources and one (8) has four sources.

For many RVC instructions, zero-valued immediates are disallowed and x0 is not a valid 5-bit
register specifier. These restrictions free up encoding space for other instructions requiring fewer
operand bits.

Format Meaning 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CR Register funct4 rd/rs1 rs2 op
CI Immediate funct3 imm rd/rs1 imm op

CSS Stack-relative Store funct3 imm rs2 op
CIW Wide Immediate funct3 imm rd′ op
CL Load funct3 imm rs1′ imm rd′ op
CS Store funct3 imm rs1′ imm rs2′ op
CB Branch funct3 offset rs1′ offset op
CJ Jump funct3 jump target op

Table 1.1: Compressed 16-bit RVC instruction formats.

RVC Register Number 000 001 010 011 100 101 110 111
Integer Register Number x8 x9 x10 x11 x12 x13 x14 x15

Integer Register ABI Name s0 s1 a0 a1 a2 a3 a4 a5

Floating-Point Register Number f8 f9 f10 f11 f12 f13 f14 f15

Floating-Point Register ABI Name fs0 fs1 fa0 fa1 fa2 fa3 fa4 fa5

Table 1.2: Registers specified by the three-bit rs1’, rs2’, and rd’ fields of the CIW, CL, CS, and CB
formats.

1.4 Load and Store Instructions

To increase the reach of 16-bit instructions, data-transfer instructions use zero-extended immediates
that are scaled by the size of the data in bytes: ×4 for words, ×8 for double words, and ×16 for
quad words.

RVC provides two variants of loads and stores. One uses the ABI stack pointer, x2, as the base
address and can target any data register. The other can reference one of 8 base address registers
and one of 8 data registers.

6 RISC-V Compressed ISA V1.9

Stack-Pointer-Based Loads and Stores

15 13 12 11 7 6 2 1 0

funct3 imm rd imm op

3 1 5 5 2
C.LWSP offset[5] dest6=0 offset[4:2|7:6] C2
C.LDSP offset[5] dest 6=0 offset[4:3|8:6] C2
C.LQSP offset[5] dest 6=0 offset[4|9:6] C2

C.FLWSP offset[5] dest offset[4:2|7:6] C2
C.FLDSP offset[5] dest offset[4:3|8:6] C2

These instructions use the CI format.

C.LWSP loads a 32-bit value from memory into register rd. It computes an effective address
by adding the zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to lw rd,

offset[7:2](x2).

C.LDSP is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register
rd. It computes its effective address by adding the zero-extended offset, scaled by 8, to the stack
pointer, x2. It expands to ld rd, offset[8:3](x2).

C.LQSP is an RV128C-only instruction that loads a 128-bit value from memory into register rd. It
computes its effective address by adding the zero-extended offset, scaled by 16, to the stack pointer,
x2. It expands to lq rd, offset[9:4](x2).

C.FLWSP is an RV32FC-only instruction that loads a single-precision floating-point value from
memory into floating-point register rd. It computes its effective address by adding the zero-extended
offset, scaled by 4, to the stack pointer, x2. It expands to flw rd, offset[7:2](x2).

C.FLDSP is an RV32DC/RV64DC-only instruction that loads a double-precision floating-point
value from memory into floating-point register rd. It computes its effective address by adding
the zero-extended offset, scaled by 8, to the stack pointer, x2. It expands to fld rd,

offset[8:3](x2).

15 13 12 7 6 2 1 0

funct3 imm rs2 op

3 6 5 2
C.SWSP offset[5:2|7:6] src C2
C.SDSP offset[5:3|8:6] src C2
C.SQSP offset[5:4|9:6] src C2

C.FSWSP offset[5:2|7:6] src C2
C.FSDSP offset[5:3|8:6] src C2

These instructions use the CSS format.

C.SWSP stores a 32-bit value in register rs2 to memory. It computes an effective address by

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 7

adding the zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to sw rs2,

offset[7:2](x2).

C.SDSP is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2 to memory.
It computes an effective address by adding the zero-extended offset, scaled by 8, to the stack pointer,
x2. It expands to sd rs2, offset[8:3](x2).

C.SQSP is an RV128C-only instruction that stores a 128-bit value in register rs2 to memory. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the stack pointer,
x2. It expands to sq rs2, offset[9:4](x2).

C.FSWSP is an RV32FC-only instruction that stores a single-precision floating-point value in
floating-point register rs2 to memory. It computes an effective address by adding the zero-extended
offset, scaled by 4, to the stack pointer, x2. It expands to fsw rs2, offset[7:2](x2).

C.FSDSP is an RV32DC/RV64DC-only instruction that stores a double-precision floating-point
value in floating-point register rs2 to memory. It computes an effective address by adding the zero-
extended offset, scaled by 8, to the stack pointer, x2. It expands to fsd rs2, offset[8:3](x2).

Register-Based Loads and Stores

15 13 12 10 9 7 6 5 4 2 1 0

funct3 imm rs1′ imm rd′ op

3 3 3 2 3 2
C.LW offset[5:3] base offset[2|6] dest C0
C.LD offset[5:3] base offset[7:6] dest C0
C.LQ offset[5|4|8] base offset[7:6] dest C0

C.FLW offset[5:3] base offset[2|6] dest C0
C.FLD offset[5:3] base offset[7:6] dest C0

These instructions use the CL format.

C.LW loads a 32-bit value from memory into register rd′. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the base address in register rs1′. It expands to lw rd′,
offset[6:2](rs1′).

C.LD is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register
rd′. It computes an effective address by adding the zero-extended offset, scaled by 8, to the base
address in register rs1′. It expands to ld rd′, offset[7:3](rs1′).

C.LQ is an RV128C-only instruction that loads a 128-bit value from memory into register rd′. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the base address
in register rs1′. It expands to lq rd′, offset[8:4](rs1′).

C.FLW is an RV32FC-only instruction that loads a single-precision floating-point value from mem-
ory into floating-point register rd′. It computes an effective address by adding the zero-extended
offset, scaled by 4, to the base address in register rs1′. It expands to flw rd′, offset[6:2](rs1′).

8 RISC-V Compressed ISA V1.9

C.FLD is an RV32DC/RV64DC-only instruction that loads a double-precision floating-point value
from memory into floating-point register rd′. It computes an effective address by adding the
zero-extended offset, scaled by 8, to the base address in register rs1′. It expands to fld rd′,
offset[7:3](rs1′).

15 13 12 10 9 7 6 5 4 2 1 0

funct3 imm rs1′ imm rs2′ op

3 3 3 2 3 2
C.SW offset[5:3] base offset[2|6] src C0
C.SD offset[5:3] base offset[7:6] src C0
C.SQ offset[5|4|8] base offset[7:6] src C0

C.FSW offset[5:3] base offset[2|6] src C0
C.FSD offset[5:3] base offset[7:6] src C0

These instructions use the CS format.

C.SW stores a 32-bit value in register rs2′ to memory. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the base address in register rs1′. It expands to sw rs2′,
offset[6:2](rs1′).

C.SD is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2′ to memory.
It computes an effective address by adding the zero-extended offset, scaled by 8, to the base address
in register rs1′. It expands to sd rs2′, offset[7:3](rs1′).

C.SQ is an RV128C-only instruction that stores a 128-bit value in register rs2′ to memory. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the base address
in register rs1′. It expands to sq rs2′, offset[8:4](rs1′).

C.FSW is an RV32FC-only instruction that stores a single-precision floating-point value in floating-
point register rs2′ to memory. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the base address in register rs1′. It expands to fsw rs2′, offset[6:2](rs1′).

C.FSD is an RV32DC/RV64DC-only instruction that stores a double-precision floating-point value
in floating-point register rs2′ to memory. It computes an effective address by adding the zero-
extended offset, scaled by 8, to the base address in register rs1′. It expands to fsd rs2′,
offset[7:3](rs1′).

1.5 Control Transfer Instructions

RVC provides unconditional jump instructions and conditional branch instructions. As with base
RVI instructions, the offsets of all RVC control transfer instruction are in multiples of 2 bytes.

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 9

15 13 12 2 1 0

funct3 imm op

3 11 2
C.J offset[11|4|9:8|10|6|7|3:1|5] C1

C.JAL offset[11|4|9:8|10|6|7|3:1|5] C1

These instructions use the CJ format.

C.J performs an unconditional control transfer. The offset is sign-extended and added to the pc to
form the jump target address. C.J can therefore target a ±2 KiB range. C.J expands to jal x0,

offset[11:1].

C.JAL is an RV32C-only instruction that performs the same operation as C.J, but additionally
writes the address of the instruction following the jump (pc+2) to the link register, x1. C.JAL
expands to jal x1, offset[11:1].

15 12 11 7 6 2 1 0

funct4 rs1 rs2 op

4 5 5 2
C.JR src6=0 0 C2

C.JALR src 6=0 0 C2

These instructions use the CR format.

C.JR (jump register) performs an unconditional control transfer to the address in register rs1. C.JR
expands to jalr x0, rs1, 0.

C.JALR (jump and link register) performs the same operation as C.JR, but additionally writes the
address of the instruction following the jump (pc+2) to the link register, x1. C.JALR expands to
jalr x1, rs1, 0.

Strictly speaking, C.JALR does not expand exactly to a base RVI instruction as the value added
to the PC to form the link address is 2 rather than 4 as in the base ISA, but supporting both
offsets of 2 and 4 bytes is only a very minor change to the base microarchitecture.

15 13 12 10 9 7 6 2 1 0

funct3 imm rs1′ imm op

3 3 3 5 2
C.BEQZ offset[8|4:3] src offset[7:6|2:1|5] C1
C.BNEZ offset[8|4:3] src offset[7:6|2:1|5] C1

These instructions use the CB format.

10 RISC-V Compressed ISA V1.9

C.BEQZ performs conditional control transfers. The offset is sign-extended and added to the pc to
form the branch target address. It can therefore target a ±256 B range. C.BEQZ takes the branch
if the value in register rs1′ is zero. It expands to beq rs1′, x0, offset[8:1].

C.BNEZ is defined analogously, but it takes the branch if rs1′ contains a nonzero value. It expands
to bne rs1′, x0, offset[8:1].

1.6 Integer Computational Instructions

RVC provides several instructions for integer arithmetic and constant generation.

Integer Constant-Generation Instructions

The two constant-generation instructions both use the CI instruction format and can target any
integer register.

15 13 12 11 7 6 2 1 0

funct3 imm[5] rd imm[4:0] op

3 1 5 5 2
C.LI imm[5] dest6=0 imm[4:0] C1

C.LUI nzimm[17] dest6={0, 2} nzimm[16:12] C1

C.LI loads the sign-extended 6-bit immediate, imm, into register rd. C.LI is only valid when rd6=x0.
C.LI expands into addi rd, x0, imm[5:0].

C.LUI loads the non-zero 6-bit immediate field into bits 17–12 of the destination register, clears
the bottom 12 bits, and sign-extends bit 17 into all higher bits of the destination. C.LUI is only
valid when rd6={x0, x2}, and when the immediate is not equal to zero. C.LUI expands into lui

rd, nzimm[17:12].

Integer Register-Immediate Operations

These integer register-immediate operations are encoded in the CI format and perform operations
on any non-x0 integer register and a 6-bit immediate. The immediate cannot be zero.

15 13 12 11 7 6 2 1 0

funct3 imm[5] rd/rs1 imm[4:0] op

3 1 5 5 2
C.ADDI nzimm[5] dest nzimm[4:0] C1

C.ADDIW imm[5] dest6=0 imm[4:0] C1
C.ADDI16SP nzimm[9] 2 nzimm[4|6|8:7|5] C1

C.ADDI adds the non-zero sign-extended 6-bit immediate to the value in register rd then writes
the result to rd. C.ADDI expands into addi rd, rd, nzimm[5:0].

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 11

C.ADDIW is an RV64C/RV128C-only instruction that performs the same computation but pro-
duces a 32-bit result, then sign-extends result to 64 bits. C.ADDIW expands into addiw rd, rd,

imm[5:0]. The immediate can be zero for C.ADDIW, where this corresponds to sext.w rd.

C.ADDI16SP shares the opcode with C.LUI, but has a destination field of x2. C.ADDI16SP adds
the non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where the
immediate is scaled to represent multiples of 16 in the range (-512,496). C.ADDI16SP is used
to adjust the stack pointer in procedure prologues and epilogues. It expands into addi x2, x2,

nzimm[9:4].

In the standard RISC-V calling convention, the stack pointer sp is always 16-byte aligned.

15 13 12 5 4 2 1 0

funct3 imm rd′ op

3 8 3 2
C.ADDI4SPN zimm[5:4|9:6|2|3] dest C0

C.ADDI4SPN is a CIW-format RV32C/RV64C-only instruction that adds a zero-extended non-zero
immediate, scaled by 4, to the stack pointer, x2, and writes the result to rd′. This instruction is
used to generate pointers to stack-allocated variables, and expands to addi rd′, x2, zimm[9:2].

15 13 12 11 7 6 2 1 0

funct3 shamt[5] rd/rs1 shamt[4:0] op

3 1 5 5 2
C.SLLI shamt[5] dest6=0 shamt[4:0] C2

C.SLLI is a CI-format instruction that performs a logical left shift of the value in register rd then
writes the result to rd. The shift amount is encoded in the shamt field, where shamt[5] must be
zero for RV32C. For RV32C and RV64C, the shift amount must be non-zero. For RV128C, a shift
amount of zero is used to encode a shift of 64. C.SLLI expands into slli rd, rd, shamt[5:0],
except for RV128C with shamt=0, which expands to slli rd, rd, 64.

15 13 12 11 10 9 7 6 2 1 0

funct3 shamt[5] funct2 rd′/rs1′ shamt[4:0] op

3 1 2 3 5 2
C.SRLI shamt[5] C.SRLI dest shamt[4:0] C1
C.SRAI shamt[5] C.SRAI dest shamt[4:0] C1

C.SRLI is a CB-format instruction that performs a logical right shift of the value in register rd′

then writes the result to rd′. The shift amount is encoded in the shamt field, where shamt[5] must
be zero for RV32C. For RV32C and RV64C, the shift amount must be non-zero. For RV128C, a
shift amount of zero is used to encode a shift of 64. Furthermore, the shift amount is sign-extended
for RV128C, and so the legal shift amounts are 1–31, 64, and 96–127. C.SRLI expands into srli

rd′, rd′, shamt[5:0], except for RV128C with shamt=0, which expands to srli rd′, rd′, 64.

C.SRAI is defined analogously to C.SRLI, but instead performs an arithmetic right shift. C.SRAI
expands to srai rd′, rd′, shamt[5:0].

12 RISC-V Compressed ISA V1.9

Left shifts are usually more frequent than right shifts, as left shifts are frequently used to scale
address values. Right shifts have therefore been granted less encoding space and are placed in
an encoding quadrant where all other immediates are sign-extended. For RV128, the decision
was made to have the 6-bit shift-amount immediate also be sign-extended. Apart from reducing
the decode complexity, we believe right-shift amounts of 96–127 will be more useful than 64–95,
to allow extraction of tags located in the high portions of 128-bit address pointers. We note
that RV128C will not be frozen at the same point as RV32C and RV64C, to allow evaluation of
typical usage of 128-bit address-space codes.

15 13 12 11 10 9 7 6 2 1 0

funct3 imm[5] funct2 rd′/rs1′ imm[4:0] op

3 1 2 3 5 2
C.ANDI imm[5] C.ANDI dest imm[4:0] C1

C.ANDI is a CB-format instruction that computes the bitwise AND of of the value in register rd′

and the sign-extended 6-bit immediate, then writes the result to rd′. C.ANDI expands to andi

rd′, rd′, imm[5:0].

Integer Register-Register Operations
15 12 11 7 6 2 1 0

funct4 rd/rs1 rs2 op

4 5 5 2
C.MV dest 6=0 src 6=0 C0

C.ADD dest6=0 src 6=0 C0

These instructions use the CR format.

C.MV copies the value in register rs2 into register rd. C.MV expands into add rd, x0, rs2.

C.ADD adds the values in registers rd and rs2 and writes the result to register rd. C.ADD expands
into add rd, rd, rs2.

15 10 9 7 6 5 4 2 1 0

funct6 rd′/rs1′ funct rs2′ op

6 3 2 3 2
C.AND dest C.AND src C1
C.OR dest C.OR src C1

C.XOR dest C.XOR src C1
C.SUB dest C.SUB src C1

C.ADDW dest C.ADDW src C1
C.SUBW dest C.SUBW src C1

These instructions use the CS format.

C.AND computes the bitwise AND of the values in registers rd′ and rs2′, then writes the result to
register rd′. C.AND expands into and rd′, rd′, rs2′.

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 13

C.OR computes the bitwise OR of the values in registers rd′ and rs2′, then writes the result to
register rd′. C.OR expands into or rd′, rd′, rs2′.

C.XOR computes the bitwise XOR of the values in registers rd′ and rs2′, then writes the result to
register rd′. C.XOR expands into xor rd′, rd′, rs2′.

C.SUB subtracts the value in register rs2′ from the value in register rd′, then writes the result to
register rd′. C.SUB expands into sub rd′, rd′, rs2′.

C.ADDW is an RV64C/RV128C-only instruction that adds the values in registers rd′ and rs2′,
then sign-extends the lower 32 bits of the sum before writing the result to register rd′. C.ADDW
expands into addw rd′, rd′, rs2′.

C.SUBW is an RV64C/RV128C-only instruction that subtracts the value in register rs2′ from the
value in register rd′, then sign-extends the lower 32 bits of the difference before writing the result
to register rd′. C.SUBW expands into subw rd′, rd′, rs2′.

This group of six instructions do not provide large savings individually, but do not occupy much
encoding space and are straightforward to implement, and as a group provide a worthwhile im-
provement in static and dynamic compression.

Defined Illegal Instruction

15 13 12 11 7 6 2 1 0

0 0 0 0 0

3 1 5 5 2
0 0 0 0 0

A 16-bit instruction with all bits zero is permanently reserved as an illegal instruction.

We reserve all-zero instructions to be illegal instructions to help trap attempts to execute zero-ed
or non-existent portions of the memory space. The all-zero value should not be redefined in any
non-standard extension. Similarly, we reserve instructions with all bits set to 1 (corresponding
to very long instructions in the RISC-V variable-length encoding scheme) as illegal to capture
another common value seen in non-existent memory regions.

NOP Instruction
15 13 12 11 7 6 2 1 0

funct3 imm[5] rd/rs1 imm[4:0] op

3 1 5 5 2
C.NOP 0 0 0 C1

C.NOP is a CI-format instruction that does not change any user-visible state, except for advancing
the pc. C.NOP is encoded as c.addi x0, 0 and so expands to addi x0, x0, 0.

14 RISC-V Compressed ISA V1.9

Breakpoint Instruction
15 12 11 2 1 0

funct4 0 op

4 10 2
C.EBREAK 0 C0

Debuggers can use the C.EBREAK instruction, which expands to ebreak, to cause control to be
transferred back to the debugging environment. C.EBREAK shares the opcode with the C.ADD
instruction, but with rd and rs2 both zero, thus can also use the CR format.

1.7 Optimizing Register Save/Restore Code Size

Register save/restore code at function entry/exit represents a significant portion of static code
size. The stack-pointer-based compressed loads and stores in RVC are effective at reducing the
save/restore static code size by a factor of 2 while improving performance by reducing dynamic
instruction bandwidth.

The standard RISC-V toolchain provides an alternative approach to reduce save/restore static code
size even further in exchange for reduced performance. Instead of inlining the register save/restore
code in each function, register save code is replaced with a jump-and-link instruction to call a
subroutine to copy registers to the stack then return to the function. Register restore code is
replaced with a jump to a routine that restores registers from the stack then jumps to the restored
return address.

Figure 1.1 shows the impact on static code size and dynamic instruction count of these routines
when näıvely applied to all functions in the SPEC CPU2006 benchmarks. On average, code size is
reduced by 4% in exchange for a 3% increase in dynamic instruction count.

The inline save/restore code is replaced with calls to the save/restore subroutines when the -Os

flag (reduce code size) is passed to gcc.

A common alternative mechanism used in other ISAs to reduce save/restore code size is load-
multiple and store-multiple instructions. We considered adopting these for RISC-V but noted
the following drawbacks to these instructions:

• These instructions complicate processor implementations.

• For virtual memory systems, some data accesses could be resident in physical memory and
some could not, which requires a new restart mechanism for partially executed instructions.

• Unlike the rest of the RVC instructions, there is no IFD equivalent to Load Multiple and
Store Multiple.

• Unlike the rest of the RVC instructions, the compiler would have to be aware of these
instructions to both generate the instructions and to allocate registers in an order to maxi-
mize the chances of the them being saved and stored, since they would be saved and restored
in sequential order.

• Simple microarchitectural implementations will constrain how other instructions can be
scheduled around the load and store multiple instructions, leading to a potential perfor-
mance loss.

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 15

m
cf

m
il

c

n
am

d

o
m

n
et

p
p

p
er

lb
en

ch

sj
en

g

so
p
le

x

sp
h

in
x

3

to
n

to

w
rf

x
al

an
cb

m
k

ze
u

sm
p

m
ea

n

P
er

ce
n
t

C
h
an

g
e

Benchmark

Static code size decrease

Dynamic insruction count increase

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

 20%

as
ta

r

b
w

av
es

b
zi

p
2

ca
lc

u
li

x

d
ea

lI
I

g
am

es
s

G
em

sF
D

T
D

g
o
b

m
k

h
2

6
4

re
f

h
m

m
er

lb
m

le
sl

ie
3

d

li
b

q
u

an
tu

m

Figure 1.1: Impact on static code size and dynamic instruction count of compressed function
prologue and epilogue subroutines.

• The desire for sequential register allocation might conflict with the featured registers selected
for the CIW, CL, CS, and CB formats.

While reasonable architects might come to different conclusions, we decided to omit load and store
multiple and instead use the software-only approach of calling save/restore millicode routines to
attain the greatest code size reduction.

1.8 RVC Instruction Set Listings

Table 1.3 shows a map of the major opcodes for RVC. Opcodes with the lower two bits set cor-
respond to instructions wider than 16 bits, including those in the base ISAs. Several instructions
are only valid for certain operands; when invalid, they are marked either RES to indicate that
the opcode is reserved for future standard extensions; NSE to indicate that the opcode is reserved
for non-standard extensions; or HINT to indicate that the opcode is reserved for future standard
microarchitectural hints. Instructions marked HINT must execute as no-ops on implementations
for which the hint has no effect.

The HINT instructions are designed to support future addition of microarchitectural hints that
might affect performance but cannot affect architectural state. The HINT encodings have been
chosen so that simple implementations can ignore the HINT encoding and execute the HINT as
regular operation that does not change architectural state. For example, C.ADD is a HINT if
the destination register is x0, where the five-bit rs2 field encodes details of the HINT. However,
a simple implementation can simply execute the HINT as an add to register x0, which will be
ignored.

Tables 1.4–1.6 list the RVC instructions.

16 RISC-V Compressed ISA V1.9

inst[15:13]
000 001 010 011 100 101 110 111

inst[1:0]

00 ADDI4SPN
FLD

LW
FLW

Reserved
FSD

SW
FSW RV32

FLD LD FSD SD RV64
LQ LD SQ SD RV128

01 ADDI
JAL

LI LUI/ADDI16SP MISC-ALU J BEQZ BNEZ
RV32

ADDIW RV64
ADDIW RV128

10 SLLI
FLDSP

LWSP
FLWSP

J[AL]R/MV/ADD
FSDSP

SWSP
FSWSP RV32

FLDSP LDSP FSDSP SDSP RV64
LQ LDSP SQ SDSP RV128

11 >16b

Table 1.3: RVC opcode map

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 0 0 00 Illegal instruction
000 nzimm[5:4|9:6|2|3] rd′ 00 C.ADDI4SPN (RES, nzimm=0)

001 imm[5:3] rs1′ imm[7:6] rd′ 00 C.FLD (RV32/64)

001 imm[5:4|8] rs1′ imm[7:6] rd′ 00 C.LQ (RV128)

010 imm[5:3] rs1′ imm[2|6] rd′ 00 C.LW

011 imm[5:3] rs1′ imm[2|6] rd′ 00 C.FLW (RV32)

011 imm[5:3] rs1′ imm[7:6] rd′ 00 C.LD (RV64/128)

100 — 00 Reserved

101 imm[5:3] rs1′ imm[7:6] rs2′ 00 C.FSD (RV32/64)

101 imm[5:4|8] rs1′ imm[7:6] rs2′ 00 C.SQ (RV128)

110 imm[5:3] rs1′ imm[2|6] rs2′ 00 C.SW

111 imm[5:3] rs1′ imm[2|6] rs2′ 00 C.FSW (RV32)

111 imm[5:3] rs1′ imm[7:6] rs2′ 00 C.SD (RV64/128)

Table 1.4: Instruction listing for RVC, Quadrant 0.

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 17

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 0 0 0 01 C.NOP
000 nzimm[5] rs1/rd 6=0 nzimm[4:0] 01 C.ADDI (RES, nzimm=0; HINT, rd=0)

001 offset[11|4|9:8|10|6|7|3:1|5] 01 C.JAL (RV32)

001 imm[5] rs1/rd 6=0 imm[4:0] 01 C.ADDIW (RV64/128; RES, rd=0)

010 imm[5] rs1/rd 6=0 imm[4:0] 01 C.LI (HINT, rd=0)

011 nzimm[9] 2 nzimm[4|6|8:7|5] 01 C.ADDI16SP (RES, nzimm=0)

011 nzimm[17] rs1/rd6={0, 2} nzimm[16:12] 01 C.LUI (RES, nzimm=0; HINT, rd=0)

100 nzimm[5] 00 rs1′/rd′ nzimm[4:0] 01 C.SRLI (RV32 NSE, nzimm[5]=1)

100 0 00 rs1′/rd′ 0 01 C.SRLI64 (RV128; RV32/64 HINT)

100 nzimm[5] 01 rs1′/rd′ nzimm[4:0] 01 C.SRAI (RV32 NSE, nzimm[5]=1)

100 0 01 rs1′/rd′ 0 01 C.SRAI64 (RV128; RV32/64 HINT)

100 imm[5] 10 rs1′/rd′ imm[4:0] 01 C.ANDI
100 0 11 rs1′/rd′ 00 rs2′ 01 C.SUB
100 0 11 rs1′/rd′ 01 rs2′ 01 C.XOR
100 0 11 rs1′/rd′ 10 rs2′ 01 C.OR
100 0 11 rs1′/rd′ 11 rs2′ 01 C.AND
100 1 11 rs1′/rd′ 00 rs2′ 01 C.SUBW (RV64/128; RV32 RES)

100 1 11 rs1′/rd′ 01 rs2′ 01 C.ADDW (RV64/128; RV32 RES)

100 1 11 — 10 — 01 Reserved
100 1 11 — 11 — 01 Reserved

101 offset[11|4|9:8|10|6|7|3:1|5] 01 C.J

110 offset[8:4|3] rs1′ offset[7:6|2:1|5] 01 C.BEQZ

111 offset[8:4|3] rs1′ offset[7:6|2:1|5] 01 C.BNEZ

Table 1.5: Instruction listing for RVC, Quadrant 1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 nzimm[5] rd6=0 nzimm[4:0] 10 C.SLLI (RV32 NSE, nzimm[5]=1)

000 0 rd6=0 0 10 C.SLLI64 (RV128; RV32/64 HINT)

001 imm[5] rd imm[4:3|8:6] 10 C.FLDSP (RV32/64)

001 imm[5] rd6=0 imm[4|9:6] 10 C.LQSP (RV128; RES, rd=0)

010 imm[5] rd6=0 imm[4:2|7:6] 10 C.LWSP (RES, rd=0)

011 imm[5] rd imm[4:2|7:6] 10 C.FLWSP (RV32)

011 imm[5] rd6=0 imm[4:3|8:6] 10 C.LDSP (RV64/128; RES, rd=0)

100 0 rs1 6=0 0 10 C.JR (RES, rs1=0)

100 0 rd6=0 rs2 6=0 10 C.MV (HINT, rd=0)

100 1 0 0 10 C.EBREAK
100 1 rs1 6=0 0 10 C.JALR
100 1 rd6=0 rs2 6=0 10 C.ADD (HINT, rd=0)

101 imm[5:3|8:6] rs2 10 C.FSDSP (RV32/64)

101 imm[5:4|9:6] rs2 10 C.SQSP (RV128)

110 imm[5:2|7:6] rs2 10 C.SWSP

111 imm[5:2|7:6] rs2 10 C.FSWSP (RV32)

111 imm[5:3|8:6] rs2 10 C.SDSP (RV64/128)

Table 1.6: Instruction listing for RVC, Quadrant 2.

18 RISC-V Compressed ISA V1.9

1.9 Instruction Compression Statistics

The following tables provide some data we used to guide the selection of instructions to include in
RVC.

Table 1.7 lists the standard RVC instructions with the most frequent first, showing the individual
contributions of those instructions to static code size and then the running total for three experi-
ments: the SPEC benchmarks for both RV32C and RV64C for the Linux kernel. For RV32, RVC
reduces static code size by 24.5% on Dhrystone and 30.9% on CoreMark. For RV64, it reduces
static code size by 26.3% on SPECint, 25.8% on SPECfp, and 31.1% on the Linux kernel.

Table 1.8 ranks the RVC instructions by order of typical dynamic frequency. For RV32, RVC
reduces dynamic bytes fetched by 29.2% on Dhrystone and 29.3% on CoreMark. For RV64, it
reduces dynamic bytes fetched by 26.9% on SPECint, 22.4% on SPECfp, and 26.11% booting the
Linux kernel.

Copyright © 2010–2015, The Regents of the University of California. All rights reserved. 19

RV32GC RV64GC
Instruction Dhry- Core- SPEC SPEC Linux Max

stone Mark 2006 2006 Kernel
C.MV 1.78 5.03 4.06 3.62 5.00 5.03
C.LWSP 4.51 2.80 2.89 0.49 0.14 4.51
C.LDSP — — — 3.20 4.44 4.44
C.SWSP 4.19 2.45 2.76 0.45 0.18 4.19
C.SDSP — — — 2.75 3.79 3.79
C.LI 2.99 3.74 2.81 2.35 2.86 3.74
C.ADDI 2.16 3.28 1.87 1.19 0.95 3.28
C.ADD 0.51 1.64 1.94 2.28 0.91 2.28
C.LW 2.10 1.68 2.00 0.74 0.62 2.10
C.LD — — — 1.14 2.09 2.09
C.J 0.32 1.71 1.63 0.97 1.53 1.71
C.SW 1.59 0.85 0.73 0.27 0.26 1.59
C.JR 1.52 1.16 0.49 0.44 1.05 1.52
C.BEQZ 0.38 1.14 0.76 0.55 1.24 1.24
C.SLLI 0.06 1.09 0.57 0.93 0.57 1.09
C.ADDI16SP 0.19 0.26 0.32 0.42 1.01 1.01
C.SRLI 0.00 0.81 0.05 0.12 0.31 0.81
C.BNEZ 0.19 0.53 0.53 0.32 0.80 0.80
C.SD — — — 0.25 0.79 0.79
C.ADDIW — — — 0.77 0.50 0.77
C.JAL 0.38 0.59 0.05 — — 0.59
C.ADDI4SPN 0.57 0.37 0.45 0.50 0.30 0.57
C.LUI 0.32 0.37 0.44 0.56 0.52 0.56
C.SRAI 0.13 0.48 0.07 0.03 0.03 0.48
C.ANDI 0.00 0.42 0.20 0.07 0.35 0.42
C.FLD 0.00 0.00 0.16 0.39 0.00 0.39
C.FLDSP 0.00 0.02 0.20 0.31 0.00 0.31
C.FSDSP 0.13 0.09 0.15 0.26 0.00 0.26
C.SUB 0.25 0.09 0.13 0.06 0.11 0.25
C.AND 0.00 0.00 0.07 0.03 0.21 0.21
C.FSD 0.00 0.00 0.08 0.18 — 0.18
C.OR 0.06 0.18 0.09 0.04 0.14 0.18
C.JALR 0.13 0.07 0.17 0.10 0.14 0.17
C.ADDW — — — 0.16 0.12 0.16
C.EBREAK 0.00 0.02 0.00 0.00 0.08 0.08
C.FLW 0.00 0.00 0.05 — — 0.05
C.XOR 0.00 0.04 0.01 0.01 0.03 0.04
C.SUBW — — — 0.04 0.03 0.04
C.FLWSP 0.00 0.00 0.03 — — 0.03
C.FSW 0.00 0.00 0.02 — — 0.02
C.FSWSP 0.00 0.00 0.02 — — 0.02
Total 24.46 30.92 25.78 25.98 31.11 —

Table 1.7: RVC instructions in order of typical static frequency. The numbers in the table show
the percentage savings in static code size attributable to each instruction. This list was generated
using a compacting assembler for the output of the RISC-V GCC compiler, directed to use RV32GC
for Dhrystone, CoreMark, and SPEC CPU2006, and RV64GC for SPEC CPU2006 and the Linux
kernel, version 3.14.29. A dash means that instruction is not defined for this address size.

20 RISC-V Compressed ISA V1.9

RV32GC RV64GC
Instruction Dhry- Core- SPEC Linux Max

stone Mark 2006 Kernel
C.ADDI 3.70 3.91 4.36 1.26 4.36
C.LW 4.15 3.89 1.09 0.87 4.15
C.MV 1.93 4.01 1.70 1.37 4.01
C.BNEZ 0.44 2.57 0.47 3.62 3.62
C.SW 3.55 1.62 0.32 0.68 3.55
C.LD — — 1.43 3.29 3.29
C.SWSP 3.26 0.32 0.20 0.03 3.26
C.LWSP 2.96 0.48 0.14 0.02 2.96
C.LI 2.22 1.47 0.81 2.73 2.73
C.ADD 2.07 2.69 2.64 1.84 2.69
C.SRLI 0.00 2.48 0.20 0.38 2.48
C.JR 2.07 0.34 0.46 0.42 2.07
C.FLD 0.00 0.00 1.63 0.00 1.63
C.SDSP — — 1.14 1.38 1.38
C.J 0.44 0.46 0.33 1.35 1.35
C.LDSP — — 1.34 1.31 1.34
C.ANDI 0.15 1.30 0.10 0.23 1.30
C.ADDIW — — 1.26 1.03 1.26
C.SLLI 0.15 1.10 1.24 0.89 1.24
C.SD — — 0.39 1.13 1.13
C.BEQZ 0.59 0.95 0.74 0.76 0.95
C.AND 0.00 0.00 0.21 0.75 0.75
C.SRAI 0.00 0.72 0.02 0.01 0.72
C.JAL 0.59 0.26 — — 0.59
C.ADDI4SPN 0.44 0.16 0.07 0.05 0.44
C.FLDSP 0.00 0.00 0.40 0.00 0.40
C.ADDI16SP 0.13 0.18 0.28 0.38 0.38
C.FSD 0.00 0.00 0.29 0.00 0.29
C.FSDSP 0.00 0.00 0.25 0.00 0.25
C.ADDW — — 0.19 0.04 0.19
C.XOR 0.00 0.19 0.06 0.02 0.19
C.OR 0.15 0.08 0.05 0.04 0.15
C.SUB 0.15 0.03 0.05 0.04 0.15
C.LUI 0.02 0.06 0.09 0.10 0.10
C.JALR 0.00 0.05 0.05 0.03 0.05
C.SUBW — — 0.04 0.02 0.04
C.EBREAK 0.00 0.00 0.00 0.00 0.00
C.FLW 0.00 0.00 — — —
C.FLWSP 0.00 0.00 — — —
C.FSW 0.00 0.00 — — —
C.FSWSP 0.00 0.00 — — —
Total 29.18 29.29 24.03 26.11 —

Table 1.8: RVC instructions in order of typical dynamic frequency. The numbers in the table show
the percentage savings in dynamic code size attributable to each instruction. This list was generated
by executing CoreMark and Dhrystone compiled for RV32GC and SPEC CPU2006 compiled for
RV64GC. For SPEC, we used the reference input set. The Linux boot includes the time to boot
the kernel, then execute the init process, the shell, and the poweroff command.

Bibliography

[1] G. M. Amdahl, G. A. Blaauw, and Jr. F. P. Brooks. Architecture of the IBM System/360. IBM
Journal of R. & D., 8(2), 1964.

[2] Werner Buchholz, editor. Planning a computer system: Project Stretch. McGraw-Hill Book
Company, 1962.

[3] James E. Thornton. Parallel operation in the Control Data 6600. In Proceedings of the October
27-29, 1964, Fall Joint Computer Conference, Part II: Very High Speed Computer Systems,
AFIPS ’64 (Fall, part II), pages 33–40, 1965.

[4] Andrew Waterman. Improving energy efficiency and reducing code size with RISC-V com-
pressed. Master’s thesis, University of California, Berkeley, 2011.

21

