
RISC-V External Debug
(aka JTAG debugging)
Tim Newsome <tim@sifive.com>

SiFive

Goals
● Debug system that works for everybody

○ Give feedback!

● Working system done by July 1, 2016
○ RISC-V on an FPGA
○ Hardware JTAG debugger

● Specification will be submitted to the RISC-V Foundation
● Open Source release of debugger
● Open Source release of implementations for Rocket Chip and Z-Scale

Status
● Specification is mostly complete

Features
● Perform reads/writes on the system bus
● Framework to debug any component in the platform (halt/freeze/run/step)
● Software breakpoints.
● Access RISC-V registers.
● Execute arbitrary instructions on a halted RISC-V core.
● Use different debug transports. (Only JTAG is specified, 1149.7 coming.)
● Use debug transport for something else (eg. serial port).
● Debug code from very first instruction executed.
● Hardware breakpoints/trace triggers.
● Trace core execution to on- or off-chip RAM. (May not be implemented.)

Overview

Platform

RISC-V core

Hardware Breakpoint
Module

Debug Module

Debug Transport Module

Debug Transport (JTAG, USB, …)

debugger (gdb, …)

System Bus Debug Program
ROM + RAM

Compon
entCompon
entComponent

Trace Module

Debug Transport Module
● Provides access to the System Bus
● Implements a message queue
● Optional authentication

Generic Component Debugging
● Abstract

○ freeze
○ halt
○ step
○ run

● May send messages through
message queue

● Optional authentication

RISC-V Control and Status Registers
● CSRs are exposed on the System

Bus
● New CSRs:

○ Debug Control and Status (dcsr)
○ Debug PC (dpc)
○ Debug Mailbox 0 (dmbox0)
○ Debug Mailbox 1 (dmbox1)
○ Debug State (dstate)
○ PC Sample (pcsample)

● Bus accesses to dmbox[01] set
bits in dstate

● Accessible through System Bus
● Not cached
● Shared between all cores

Debug Memory

ROM 1KB, but more than 50% nops.
“functions”:

● entry
● exit
● send_x8
● receive_x8
● instruction_loop

RAM At least 8 bytes. 16 bytes
recommended.

Halt
1. Core

a. Saves PC to Debug PC
b. Jumps to Debug ROM

i. Writes x1 to mbox0
ii. Writes x9 to mbox1
iii. Signals debugger
iv. Waits for read to mbox0

2. Debugger
a. Notices message or polls dstate
b. Reads PC from Debug PC
c. Reads x9 from mbox1

d. Writes 2 j instruction_loop
instructions to Debug RAM

e. Reads x1 from mbox0

3. Core
a. Sees that mbox0 was read
b. Jumps to Debug RAM
c. Jumps to instruction_loop
d. Writes x8 to mbox0
e. Signals debugger
f. Waits for write to mbox0

4. Debugger
a. Notices message or polls dstate
b. Reads x8 from mbox0

Write x13
1. Debugger

a. Writes new value to mbox1
b. Writes mov x13, x8 to mbox0

2. Core
a. Sees mbox0 was written
b. Writes instruction in mbox0 to Debug

RAM
c. Writes mbox1 to x8
d. Jumps to Debug RAM
e. Executes mov
f. Jumps back to instruction_loop

g. Signals debugger

Small Debug Program
Pretend there exist some cache access CSRs, and Debug RAM is 24 bytes.

1. mov x9, zero

loop: csrw CACHE_INDEX, x9
 csrr x8, CACHE_DATA
 jal send_x8
 addi x9, x9, 1
 j loop

2. Execute program
3. When reading the last value in send_x8, change code to j

instruction_loop

Hardware Breakpoints
● Up to 4095 breakpoints

supported (but 4 is more typical)
● Each breakpoint may support:

○ Exact address match
○ Address range match
○ Masked address match
○ Exact data match
○ Data range match
○ Masked data match
○ Trigger on load
○ Trigger on store
○ Trigger on execute

Triggered hardware breakpoints may:

● Cause Debug Exception
● Enter Debug Mode
● Start tracing
● Stop tracing
● Emit single trace sequence

Trace Data
Data consists of sequences of 4-bit packets:

● Nop
● PC, Count, data
● Branch Not Taken
● Branch Taken
● Trace Disable
● Trace Enabled, Version

Count indicates the number of data packets to follow.

Missing data is filled in with previous value (address) or by sign extending (data).

● Privilege Level, Details
● Load Address, Count, data
● Store Address, Count, data
● Load Data, Count, data
● Store Data, Count, data
● Timestamp, Count, data

Trace Features
● Output to System Bus, internal RAM (not specced), or external port (not

specced)
● Control over which sequences are output
● Use Hardware Breakpoint Module to start/stop trace

Trace Uses
● Simply reconstruct all PC values
● Watch all writes to some area of memory
● Reconstruct all processor state (assuming enough bandwidth and a smart

decoded)

Questions? Feedback?
Missing features?
Bits in the wrong order?
Debug hardware that should be supported?

Let me know: Tim Newsome <tim@sifive.com>

Work-in-progress spec will be posted to hw-dev@lists.riscv.org later today.

mailto:hw-dev@lists.riscv.org

