A CPU FOR EASY TECHNOLOGY MIGRATION

Dr. Richard Herveille
3rd RISC-V Workshop
Roa Logic

- Privately held and financed consultancy firm
- Specialized in custom IP and FPGA migrations
- Incorporated in 2014
- Strong industry basis
 - Founded by one of the original OpenCores members
 - Engaged in FPGA migrations since 2003.
 - Largely academic team
Freedom of Design

• Different hardware platforms are suited for different needs
 – FPGAs: prototyping, low volume, no NRE, fast TTM
 – Platform ASIC: high performance, low power, fast TTM
 – Std.cell ASICs: highest performance, lowest power, lowest unit price

• Market conditions dictate freely migrating between these technologies is highly desirable
 – E.g. price pressure, power reduction, ASIC EOL, security

• FPGA Vendor specific macros limit the migration to another vendor/technology.
 – Most notably FPGA vendor provided CPUs (e.g. Nios, Microblaze) restrict their usage in other technologies.
Why Migrate FPGAs to ASICs?

• 4P’s
 – Price
 – Performance
 – Power
 – Protection
 • IP theft by copying bitstream
 • Security breach by snooping bitstream or hijacking FPGA
 • SEU/MBU sensitivity
 • Platform availability
Alternatives Study

- Many proprietary and open source alternatives
 - ARM, MIPS, ARC
 - OpenRisc, Leon 2/3
 - OpenSparc, T1
- All have limitations on usability
 - High NREs, limiting ROI
 - Technology applicability/availability
 - Outdated ISAs
 - Potential legal issues due to (L)GPL licensing
Why RISC-V

• CPU requirements
 – Royalty free
 – Target technology independent
 – Equally well suited for FPGA and ASIC
 – Low resource requirements
 – Flexible instruction/feature set
 – Support for multiple bus interfaces

• The RISC-V ISA allows us to fulfill all of the above
RV11

• Roa Logic’s RV32/64 implementation
 – RV11 = in-order, single issue, single thread
 – RV22 = in-order, dual issue, dual thread

• ‘Folded’ optimizing, 5 stage Pipeline
 – Some classic RISC stages are folded together for performance reasons
 – ID stage decides if instruction sequence can be optimized. Improves IPC by hiding stalls

• Designed for FPGA to ASIC migration
 – Technology independent
 – Parameters allows trade offs between features, ISA extensions, and performance vs area
 – Flexible bus interface allows virtual drop-in into any existing system
Architecture

RISC-V Core
- CPU State
- Register File
- Instruction Cache

Execution Pipeline
- Fetch
- Pre-Decode
- Decode/Optimize
- Execute
- Write Back

Branch Predictor
Data Cache

Instruction Interface
Data Interface
Debug Unit
Configurable Interface
Optional Unit
Customer Case Study

- Replace NIOS-II 32-bit Control Plane CPU
 - >100DMIPS
 - No MMU, No Caches
 - AHB3 Interfaces
- Replaced NIOS in the FPGA
 - HW/SW development, test and debug
- Migration to eASIC’s Nextreme-3 Platform ASIC
Replacement Flow

- **Parallel flow**
 - Verify & Debug on FPGA
 - Implement Platform ASIC

- **Once FPGA verification completed Platform ASIC can be taped-out**
Implementation Results

<table>
<thead>
<tr>
<th></th>
<th>Logic Cells</th>
<th>Flipflops</th>
<th>bRAM</th>
<th>Fmax</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclone-V</td>
<td>1923 ALMs</td>
<td>1561</td>
<td>4</td>
<td>114MHz</td>
<td>556mW</td>
</tr>
<tr>
<td>Nextreme-3</td>
<td>7924 eCells</td>
<td>2386</td>
<td>1</td>
<td>649MHz</td>
<td>170mW</td>
</tr>
<tr>
<td>64bit</td>
<td>14721 eCells</td>
<td>4249</td>
<td>1</td>
<td>578MHz</td>
<td>221mW</td>
</tr>
</tbody>
</table>

- Cyclone-V was customer’s current FPGA
- Nextreme-3 chosen for price, performance, and power
 - 5.7x performance increase while reducing power by 70%

- ToDo:
 - Nextreme implements register file in flip flops
Summary

• Implemented RISC-V in a technology independent manner
• Successfully replaced existing FPGA CPU
• Successfully migrated FPGA to Platform ASIC thereby improving CPU performance by 5x and power by 70%

• Next steps
 – Improve resource utilization
 – Increase extensions offerings
 – Add multi-threading, multi-issue
QUESTIONS?
THANK YOU