4 RISC

Interrupts

Krste Asanovic

UC Berkeley & SiFive Inc.
krste@berkeley.edu

4t RISC-V Workshop
MIT CSAIL, Cambridge, MA
July 12, 2016) de L
Pre-workshop draft — see riscv.org for final version &

: 4 Interrupt Uses in Different Applications
RISC

* High-performance Unix-like systems

— Interrupt handling small fraction of processing time
— Fast cores, smart devices

— Minimal interrupt handler
— Scheduling in software

= Low/mid embedded systems

— Interrupt handling significant fraction of processor time
— Slow cores, dumb devices

— Significant fraction of code in handlers
— Interrupt controller acts as task scheduler

* High-performance real-time systems
— Can’t waste time on interrupt overhead
— Handlers poll 1/O devices with regular heartbeat

= And everything inbetween

: y RISC-V Interrupt Design Goals

RISC
= Simplicity
= Support all kinds of platforms from microcontrollers
to virtualized servers
= Enable tradeoffs between performance and
implementation cost
= Flexibility to support specialized needs

: 4 Categorizing Sources of RISC-V Interrupts

RISC

= Local Interrupts
— Directly connected to one hart
— No arbitration between harts to service
— Determine source directly through xcause CSR
— Only two standard local interrupts (software, timer)

= Global (External) Interrupts
— Routed via Platform-Level Interrupt Controller (PLIC)
— PLIC arbitrates between multiple harts claiming interrupt
— Read of memory-mapped register returns source

: 4 Machine Interrupt Pending CSR (mip)

RISC

(Add Non-Standard
Local Interrupts Here)

XLEN-1 12 11 10 9 & 7 6 5 4 3 2 1 0
| WIRI [MEIP | HEIP | SEIP | UEIP | MTIP | HTIP | STIP | UTIP | MSIP | HSIP | SSIP | USIP |
XLEN-12 1 1 1 1}\ 1 1 1 1}\ 1 1 1 1 j
External from PLIC Local Timer Local Software

= mip reflects pending status of interrupts for hart

= Separate interrupts for each supported privilege level
(M/H/S/U)

= User-level interrupt handling (“N”) optional feature
when U-mode present (discussed later)

: 4 Platform-Level Interrupt Controller (PLIC)
RIS C
Global Interrupts Local Interrupts
Hart O —

<4—Timer
External External External U €—Software

Interrupt 1 Interrupt 2 <«—Timer
¢ ¢ S €—Software

<4—Timer

% H €4—Software

<—Timer

% M €4—Software
»

~
>
-

PLIC

<4—Timer
U €4—Software

<4—Timer
4—Software

S

<4—Timer
H €4—Software
M

<4—Timer
€—Software

: y Software Interrupts
RISC
= MSIP
— Only writeable in machine-mode via memory-mapped
control register (mapping is platform-specific)
— One hart can write to different hart’s MSIP register
— Mechanism for inter-hart interrupts

= HSIP, SSIP, USIP

— Hart can only write bit xSIP in own mip register when
running at privilege mode x or greater

= App/OS/Hypervisor can only perform inter-hart

interrupts via ABI/SBI/HBI calls

— Destination virtual hart might be descheduled
— Interrupts virtualized by M-mode software using MSIP

: y Timer Interrupts

RIS C
= MTIP
— Single 64-bit real-time hardware timer and comparator in
M-mode

- MTIP set when mt ime >=mt imecmp
— MTIP cleared by writing new mt imecmp value

= HTIP, STIP, UTIP
— M-mode multiplexes single hardware timer and
comparator for lower-privilege modes on same hart
— ABI/SBI/HBI calls to set up timer
— M-mode software writes/clears HTIP/STIP/UTIP

= Most systems will also have other hardware timers
attached via PLIC etc.

: y Machine Interrupt Enable CSR (mie)

RISC
XLEN-1 12 11 10 9 8 7 6 5 4 3 2 1 0
| WPRI [MEIE [HEIE [SEIE [UEIE | MTIE [HTIE [STIE [UTIE | MSIE | HSIE [SSIE | USIE |
XLEN-12 1 1 1 1 1 1 1 1 1 1 1 1
External from PLIC Local Timer Local Software

= mie mirrors layout of mip
= provides per-interrupt enables

<

Interrupts in mstatus

RISC
XLEN-1 XLEN-2 29 28 24 23 19 18 17 16 15 14 13
SD WPRI VM[4:0] (WARL) | WPRI | PUM | MPRV | XS[1:0] | FS[1:0]
1 XLEN-30 5 5 1 1 2 2
12 11 10 9 8 7 6 5% 3 2 1
MPP[1:0] | HPP[1:0] | SPP | MPIE | HPIE | SPIE | UPIE | MIE | HIE | SIE | UIE
2 2 1 1 1 1 T 1 1
\ J\ J\ J
Y Y Y

Privilege stack

Enable stack

Per-privilege global
interrupt enables

= Only take a pending interrupt for privilege mode x if
xIE=1 and running in mode x or greater
= Interrupts always disabled for privileges less than

current level

10

: 4 Allinterrupts trap to M-mode by default

RISC

= mcause CSR indicates which interrupt occurred

= M-mode can redirect to other privilege level by:
— set up target interrupt and privilege stack
- copy mepc to hepc/sepc/uepc respectively
- copy mcause to hcause/scause/ucause
- set mepc to target trap vector
— set MPP to target privilege level, MPIE to false

— execute mret

Interrupt | Exception Code | Description
1 0 | User software interrupt
1 1 | Supervisor software interrupt
1 2 | Hypervisor software interrupt
1 3 | Machine software interrupt
1 4 | User timer interrupt
1 5 | Supervisor timer interrupt
1 6 | Hypervisor timer interrupt
1 7 | Machine timer interrupt
1 8 | User external interrupt
1 9 | Supervisor external interrupt
1 10 | Hypervisor external interrupt
1 11 | Machine external interrupt
1 >12 | Reserved 11

: 4 Optional Interrupt Handler Delegation
RISC

= Can delegate interrupt (and exception) handling to
lower privilege level to reduce overhead

* mideleg has same layout asmip

= |f a bitis setinmideleg then corresponding
interrupt delegated to next lowest privilege level (H,
S, or U)

= Can be delegated again using hideleg/sideleg

= Once delegated, the interrupt will not affect current
privilege level (MIE setting ignored)

12

: 4 Platform-Level Interrupt Controller (PLIC)

RISC

External External
Interrupt 1 Interrupt 2

y v

Global Interrupts

~
>
-

Local Interrupts

PLIC

Hart O (

<4—Timer

U €—Software
<4—Timer

S 4—Software
<4—Timer

H €—Software
<4—Timer

M €—Software

Hart 1

<4—Timer

U €4—Software
<4—Timer

S 4—Software
<4—Timer

H 4—Software
<4—Timer

M €—Software

\

13

A

Interrupt 1 Signals

1y

Interrupt 2 Signals

PLIC Conceptual Block Diagram

-

J

-

J

Gateway Gateway
|
' Interrupt Request Interrupt Request PLIC Gateways_
y y
! IP| |Priority IP| |Priority |
U) |
IEREERRRE Ao ¢ PO ¥
¥ Ef >? Ef >? |
: 0 0 0 Max Pri. EIp 5 5 Interrupt
- 1 1 Threshold 11 Notification
0 0 0 .
. 1 _lq o _ls Max ID | Interrupt ID
% EF >? iy >? 1
| 0 0 0 Max Pri. EIP : 5 Interrupt
: 1 1 Threshold :1 Notification
: 0 :
I 1 _? 5 _? Max ID - Interrupt ID
|
| | |
| |
. . PLIC Core
| - - - - - - - - - - - - -

To
>Targ et

To
>Targ et

14

: A PLIC Interrupt Gateways

RISC

Convert from external interrupt signal/message

encoding to internal PLIC interrupt request, e.g.,

= Level-triggered gateways

= Edge-triggered gateways

* Message-signaled gateways

= XXX gateways in future

Will not forward a new request to PLIC core unless

previous request’s handler has signaled completion

= Level-triggered will issue new PLIC interrupt request if
level still asserted after completion signaled

= Edge-triggered/message-signaled could queue
requests

15

: A PLIC Per-Interrupt ID and Priority

RISC
= Each interrupt has ID and priority

= Interrupt IDs are integers from 1...N
= |D of zero means “no interrupt”

= Priorities are integers, larger number is higher priority
* Priority zero means “never interrupt”

= Priorities can be fixed or variable
— Degenerate case, all are fixed at “1”.

= Ties broken by ID (lower ID is higher priority)

16

: 4 PLIC Per-Target Information

RISC
= Each target has vector of interrupt enables

= Each target has priority threshold
= Only interrupts with priority above threshold will
cause interrupt

= Set threshold to 0, has no effect
— Minimal implementation, hardwire threshold to zero

= Set threshold to MAX_PRI, then all interrupts masked

= Interrupt notifications asserted at target if enabled

interrupt is above threshold
— Notifications can take arbitrary time to arrive at target

17

A

Interrupt 1 Signals

1y

Interrupt 2 Signals

PLIC Conceptual Block Diagram

-

J

-

J

Gateway Gateway
|
' Interrupt Request Interrupt Request PLIC Gateways_
y y
! IP| |Priority IP| |Priority |
U) |
IEREERRRE Ao ¢ PO ¥
¥ Ef >? Ef >? |
: 0 0 0 Max Pri. EIp 5 5 Interrupt
- 1 1 Threshold 11 Notification
0 0 0 .
. 1 _lq o _ls Max ID | Interrupt ID
% EF >? iy >? 1
| 0 0 0 Max Pri. EIP : 5 Interrupt
: 1 1 Threshold :1 Notification
: 0 :
I 1 _? 5 _? Max ID - Interrupt ID
|
| | |
| |
. . PLIC Core
| - - - - - - - - - - - - -

To
>Targ et

To
>Targ et

18

: y PLIC Claim/Completion

RISC

= Interrupted hart context claims interrupt from PLIC
with read of memory-mapped register

= PLIC returns highest priority active interrupt for that
hart

= Can return O if no active interrupts remain
— Other hart might have claimed interrupt earlier

= Hart sighals completion to gateway after handler
finishes

19

: y PLIC Core Atomic Actions

RISC

e Write Register: A message containing a register write request is dequeued. One of the

internal registers is written, where an internal register can be a priority, an interrupt-enable
(IE), or a threshold.

e Accept Request: If the IP bit corresponding to the interrupt source is clear, a message
containing an interrupt request from a gateway is dequeued and the IP bit is set.

e Process Claim: An interrupt claim message is dequeued. A claim-response message is
enqueued to the requester with the ID of the highest-priority active interrupt for that target,
and the IP bit corresponding to this interrupt source is cleared.

* Implementations can perform one action over many
cycles, or many actions per cycle, provided behavior
agrees with some sequence of these actions

20

PLIC Interrupt Flow

Interrupt PLIC
Source Gateway Core
| | | |
! Interrupt ! ! !
Signalled
Interrupt
Request
Interrupt
[Notification
Interrupt
Claim
\ Claim
T wﬁ
Interrupt
Completion
«—
Request

Target

>

Handler
Running

21

: A PLIC Interrupt Preemption/Nesting

RISC

* Preemption and nesting are function of the target
core, not the PLIC

* Need a different hart context to receive nested
interrupt

= Each standard RISC-V privilege level can provide one

level of preemption/nesting
— M-mode interrupt will preempt S-mode handler on hart

= Can add additional hart contexts to core to support
nested interrupt handling, with per-cores rules on
preemption/priority

22

: 4 PLIC Access Control

RISC

= PLIC registers are memory mapped, platform-specific

* M-mode-only access to interrupt enables and
priorities

= Lower privilege modes only access claim, completion,

and threshold registers

— can only signal completion for inputs for which they’re
enabled

23

SiFive Freedom Platform PLIC Mapping

Address Description
0x4000.0000 | Reserved)
0x4000_0004 | source 1 priority
0x4000_0008 | source 2 priority

0x4000_OFFC | source 1023 priority
0x4000.1000 | Start of pending array
- (read-only)
0x4000_107C | End of pending array
0x4000_.1800

Reserved >-

Machine-mode

only
0x4000_1FFF

0x4000_2000 | target O enables
0x4000_2080 | target 1 enables

0x401E_FF80 | target 15871 enables
0x401F_0000
ce Reserved
0x401F _FFFC
0x4020_0000 | target O priority threshold
0x4020_0004 | target 0 claim/complete Ta rget per
0x4020_1000 | target 1 priority threshold page to

0x4020_ 1004 | target 1 claim/complete >—

J\

simplify
protection

0x43FF_F000 | target 15871 priority threshold
0x43FF_F004 | target 15871 claim/complete _

24

: 4 Interrupt/Trap Vectors

RISC
= By default, single entry point per privilege level:
-mtvec/htvec/stvec/utvec
= Useful in many systems where common handling

code used, with bulk of work scheduled later
— “Interrupt is data”

= Can optionally add differentiated entry points per

trap type for embedded applications
— “Interrupt is control”

25

: y User-Level Interrupts “N”
RIS C

= Natural extension of interrupt model into user
permissions
= Adds user CSRs, and uret instruction

Number | Privilege | Name Description
User Trap Setup

0x000 URW ustatus | User status register.
0x004 URW uie User interrupt-enable register.
0x005 URW utvec User trap handler base address.

User Trap Handling
0x040 URW uscratch | Scratch register for user trap handlers.
0x041 URW uepc User exception program counter.
0x042 URW ucause User trap cause.
0x043 URW ubadaddr | User bad address.
0x044 URW uip User interrupt pending.

: 4 Interrupts in Secure Embedded Systems
RISC (M, U modes)

* M-mode runs secure boot and runtime monitor

* Embedded code runs in U-mode

= Physical memory protection on U-mode accesses

* Interrupt handling can be delegated to U-mode code
= Provides arbitrary number of isolated subsystems

Devicel —»| U-mode U-mode Device 2
Interrupts process 1 process 2 Interrupts
Other —» M-mode monitor
Interrupts

27

Questions?

28

