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: 4 Interrupt Uses in Different Applications
RISC

* High-performance Unix-like systems

— Interrupt handling small fraction of processing time
— Fast cores, smart devices

— Minimal interrupt handler
— Scheduling in software

= Low/mid embedded systems

— Interrupt handling significant fraction of processor time
— Slow cores, dumb devices

— Significant fraction of code in handlers
— Interrupt controller acts as task scheduler

* High-performance real-time systems
— Can’t waste time on interrupt overhead
— Handlers poll 1/O devices with regular heartbeat

= And everything inbetween



: y RISC-V Interrupt Design Goals

RISC
= Simplicity
= Support all kinds of platforms from microcontrollers
to virtualized servers
= Enable tradeoffs between performance and
implementation cost
= Flexibility to support specialized needs



: 4 Categorizing Sources of RISC-V Interrupts

RISC

= Local Interrupts
— Directly connected to one hart
— No arbitration between harts to service
— Determine source directly through xcause CSR
— Only two standard local interrupts (software, timer)

= Global (External) Interrupts
— Routed via Platform-Level Interrupt Controller (PLIC)
— PLIC arbitrates between multiple harts claiming interrupt
— Read of memory-mapped register returns source



: 4 Machine Interrupt Pending CSR (mip)

RISC

(Add Non-Standard
Local Interrupts Here)

XLEN-1 12 11 10 9 & 7 6 5 4 3 2 1 0
| WIRI [ MEIP | HEIP | SEIP | UEIP | MTIP | HTIP | STIP | UTIP | MSIP | HSIP | SSIP | USIP |
XLEN-12 1 1 1 1}\ 1 1 1 1}\ 1 1 1 1 j
External from PLIC Local Timer Local Software

= mip reflects pending status of interrupts for hart

= Separate interrupts for each supported privilege level
(M/H/S/U)

= User-level interrupt handling (“N”) optional feature
when U-mode present (discussed later)



: 4 Platform-Level Interrupt Controller (PLIC)
RIS C
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: y Software Interrupts
RISC
= MSIP
— Only writeable in machine-mode via memory-mapped
control register (mapping is platform-specific)
— One hart can write to different hart’s MSIP register
— Mechanism for inter-hart interrupts

= HSIP, SSIP, USIP

— Hart can only write bit xSIP in own mip register when
running at privilege mode x or greater

= App/OS/Hypervisor can only perform inter-hart

interrupts via ABI/SBI/HBI calls

— Destination virtual hart might be descheduled
— Interrupts virtualized by M-mode software using MSIP



: y Timer Interrupts

RIS C
= MTIP
— Single 64-bit real-time hardware timer and comparator in
M-mode

- MTIP set when mt ime >=mt imecmp
— MTIP cleared by writing new mt imecmp value

= HTIP, STIP, UTIP
— M-mode multiplexes single hardware timer and
comparator for lower-privilege modes on same hart
— ABI/SBI/HBI calls to set up timer
— M-mode software writes/clears HTIP/STIP/UTIP

= Most systems will also have other hardware timers
attached via PLIC etc.



: y Machine Interrupt Enable CSR (mie)

RISC
XLEN-1 12 11 10 9 8 7 6 5 4 3 2 1 0
| WPRI [ MEIE [ HEIE [ SEIE [ UEIE | MTIE [ HTIE [ STIE [ UTIE | MSIE | HSIE [ SSIE | USIE |
XLEN-12 1 1 1 1 1 1 1 1 1 1 1 1
External from PLIC Local Timer Local Software

= mie mirrors layout of mip
= provides per-interrupt enables



<

Interrupts in mstatus

RISC
XLEN-1 XLEN-2 29 28 24 23 19 18 17 16 15 14 13
SD WPRI VM[4:0] (WARL) | WPRI | PUM | MPRV | XS[1:0] | FS[1:0]
1 XLEN-30 5 5 1 1 2 2
12 11 10 9 8 7 6 5% 3 2 1
MPP[1:0] | HPP[1:0] | SPP | MPIE | HPIE | SPIE | UPIE | MIE | HIE | SIE | UIE
2 2 1 1 1 1 T 1 1
\ J\ J\ J
Y Y Y

Privilege stack

Enable stack

Per-privilege global
interrupt enables

= Only take a pending interrupt for privilege mode x if
xIE=1 and running in mode x or greater
= Interrupts always disabled for privileges less than

current level
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: 4 Allinterrupts trap to M-mode by default

RISC

= mcause CSR indicates which interrupt occurred

= M-mode can redirect to other privilege level by:
— set up target interrupt and privilege stack
- copy mepc to hepc/sepc/uepc respectively
- copy mcause to hcause/scause/ucause
- set mepc to target trap vector
— set MPP to target privilege level, MPIE to false

— execute mret

Interrupt | Exception Code | Description
1 0 | User software interrupt
1 1 | Supervisor software interrupt
1 2 | Hypervisor software interrupt
1 3 | Machine software interrupt
1 4 | User timer interrupt
1 5 | Supervisor timer interrupt
1 6 | Hypervisor timer interrupt
1 7 | Machine timer interrupt
1 8 | User external interrupt
1 9 | Supervisor external interrupt
1 10 | Hypervisor external interrupt
1 11 | Machine external interrupt
1 >12 | Reserved 11




: 4 Optional Interrupt Handler Delegation
RISC

= Can delegate interrupt (and exception) handling to
lower privilege level to reduce overhead

* mideleg has same layout asmip

= |f a bitis setinmideleg then corresponding
interrupt delegated to next lowest privilege level (H,
S, or U)

= Can be delegated again using hideleg/sideleg

= Once delegated, the interrupt will not affect current
privilege level (MIE setting ignored)
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: 4 Platform-Level Interrupt Controller (PLIC)

RISC

External External
Interrupt 1 Interrupt 2

y v

Global Interrupts

~
>
-

Local Interrupts

PLIC

Hart O (

<4—Timer

U €—Software
<4—Timer

S 4—Software
<4—Timer

H €—Software
<4—Timer

M €—Software

Hart 1

<4—Timer

U €4—Software
<4—Timer

S 4—Software
<4—Timer

H 4—Software
<4—Timer

M €—Software

\

13



A

Interrupt 1 Signals

1y

Interrupt 2 Signals
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: A PLIC Interrupt Gateways

RISC

Convert from external interrupt signal/message

encoding to internal PLIC interrupt request, e.g.,

= Level-triggered gateways

= Edge-triggered gateways

* Message-signaled gateways

= XXX gateways in future

Will not forward a new request to PLIC core unless

previous request’s handler has signaled completion

= Level-triggered will issue new PLIC interrupt request if
level still asserted after completion signaled

= Edge-triggered/message-signaled could queue
requests
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: A PLIC Per-Interrupt ID and Priority

RISC
= Each interrupt has ID and priority

= Interrupt IDs are integers from 1...N
= |D of zero means “no interrupt”

= Priorities are integers, larger number is higher priority
* Priority zero means “never interrupt”

= Priorities can be fixed or variable
— Degenerate case, all are fixed at “1”.

= Ties broken by ID (lower ID is higher priority)
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: 4 PLIC Per-Target Information

RISC
= Each target has vector of interrupt enables

= Each target has priority threshold
= Only interrupts with priority above threshold will
cause interrupt

= Set threshold to 0, has no effect
— Minimal implementation, hardwire threshold to zero

= Set threshold to MAX_PRI, then all interrupts masked

= Interrupt notifications asserted at target if enabled

interrupt is above threshold
— Notifications can take arbitrary time to arrive at target
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: y PLIC Claim/Completion

RISC

= Interrupted hart context claims interrupt from PLIC
with read of memory-mapped register

= PLIC returns highest priority active interrupt for that
hart

= Can return O if no active interrupts remain
— Other hart might have claimed interrupt earlier

= Hart sighals completion to gateway after handler
finishes
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: y PLIC Core Atomic Actions

RISC

e Write Register: A message containing a register write request is dequeued. One of the

internal registers is written, where an internal register can be a priority, an interrupt-enable
(IE), or a threshold.

e Accept Request: If the IP bit corresponding to the interrupt source is clear, a message
containing an interrupt request from a gateway is dequeued and the IP bit is set.

e Process Claim: An interrupt claim message is dequeued. A claim-response message is
enqueued to the requester with the ID of the highest-priority active interrupt for that target,
and the IP bit corresponding to this interrupt source is cleared.

* Implementations can perform one action over many
cycles, or many actions per cycle, provided behavior
agrees with some sequence of these actions
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PLIC Interrupt Flow
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: A PLIC Interrupt Preemption/Nesting

RISC

* Preemption and nesting are function of the target
core, not the PLIC

* Need a different hart context to receive nested
interrupt

= Each standard RISC-V privilege level can provide one

level of preemption/nesting
— M-mode interrupt will preempt S-mode handler on hart

= Can add additional hart contexts to core to support
nested interrupt handling, with per-cores rules on
preemption/priority
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: 4 PLIC Access Control

RISC

= PLIC registers are memory mapped, platform-specific

* M-mode-only access to interrupt enables and
priorities

= Lower privilege modes only access claim, completion,

and threshold registers

— can only signal completion for inputs for which they’re
enabled
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SiFive Freedom Platform PLIC Mapping

Address Description
0x4000.0000 | Reserved )
0x4000_0004 | source 1 priority
0x4000_0008 | source 2 priority

0x4000_OFFC | source 1023 priority
0x4000.1000 | Start of pending array
- (read-only)
0x4000_107C | End of pending array
0x4000_.1800

Reserved >-

Machine-mode

only
0x4000_1FFF

0x4000_2000 | target O enables
0x4000_2080 | target 1 enables

0x401E_FF80 | target 15871 enables
0x401F_0000
ce Reserved
0x401F _FFFC
0x4020_0000 | target O priority threshold
0x4020_0004 | target 0 claim/complete Ta rget per
0x4020_1000 | target 1 priority threshold page to

0x4020_ 1004 | target 1 claim/complete >—

J\

simplify
protection

0x43FF_F000 | target 15871 priority threshold
0x43FF_F004 | target 15871 claim/complete _
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: 4 Interrupt/Trap Vectors

RISC
= By default, single entry point per privilege level:
-mtvec/htvec/stvec/utvec
= Useful in many systems where common handling

code used, with bulk of work scheduled later
— “Interrupt is data”

= Can optionally add differentiated entry points per

trap type for embedded applications
— “Interrupt is control”
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: y User-Level Interrupts “N”
RIS C

= Natural extension of interrupt model into user
permissions
= Adds user CSRs, and uret instruction

Number | Privilege | Name Description
User Trap Setup

0x000 URW ustatus | User status register.
0x004 URW uie User interrupt-enable register.
0x005 URW utvec User trap handler base address.

User Trap Handling
0x040 URW uscratch | Scratch register for user trap handlers.
0x041 URW uepc User exception program counter.
0x042 URW ucause User trap cause.
0x043 URW ubadaddr | User bad address.
0x044 URW uip User interrupt pending.




: 4 Interrupts in Secure Embedded Systems
RISC (M, U modes)

* M-mode runs secure boot and runtime monitor

* Embedded code runs in U-mode

= Physical memory protection on U-mode accesses

* Interrupt handling can be delegated to U-mode code
= Provides arbitrary number of isolated subsystems

Devicel —»| U-mode U-mode Device 2
Interrupts process 1 process 2 Interrupts
Other —» M-mode monitor
Interrupts
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Questions?
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