A Memory Consistency Model For RISC-V
Formally Evaluated with TriCheck

Caroline Trippel

Princeton University
November 29, 2016

Caroline Trippel, Yatin Manerkar, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. “TriCheck: Memory Model
Verification at the Trisection Software, Hardware, and ISA”. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '17).

W PRINCETON
& UNIVERSITY

Role of the Instruction Set Architecture (ISA)

Strong PPO (e.g., SC, TSO)

Fewer ordering primitives
(e.g., fences/barriers)
inserted by compiler

Hardware

* Introduced in 1964 by IBM

* 1 set of software
e >1 hardware implementations Software/HLL
* Definitive spec. of hardware dering primitives
dS Seen by software: (e.g., fences/barriers)
» Specification of what hardware _nserted by compiler
must implement Software/HLL

* Target for compiler translation Weak PPO (e.g., ARM, POWER)

Hardware

- % PRINCETON
¥ UNIVERSITY

Our Work: Memory Consistency Model Verification

ArMOR [Lustig et al. ISCA ’15]<

PRINCETON
UNIVERSITY

Software/HLL

Memory Model

Compilation
I
Operating System

ISA
Memory Model

Microarchitectural Implementation

Hardware
Memory Model

TriCheck [Trippel et al. ASPLOS ‘17]

1 COATCheck [Lustig et al. ASPLOS “16]

PipeCheck [Lustig et al. MICRO-47]
CCICheck [Manerkar et al. MICRO-48]

Memory Models Bugs Observed in Practice

ARM Read-after-Read Hazard [Alglave et al. TOPLAS ‘14]
* Ambiguous ISA spec. regarding same-address Ld—=>Ld ordering

* ARM compilers did not insert synchronization primitives (e.g., fences/barriers)

* Some ARM implementations relaxed same-address Ld—> Ld ordering (e.g.,
Cortex-A9, Snapdragon 805)

» C/C++ atomics require same-address Ld—>Ld ordering

 ARM issued erratal: Rewrite compilers to insert fences (with performance
penalties)

We've identified and characterized flaws in the current RISC-V
memory model (i.e., the memory model defined in the current
manual) [Trippel et al. ASPLOS ‘17]

Note that the modifications to fix these issues will be mostly
L W PRINCETON . , _ _
UNIVERSITY compatible with current implementations.

Outline

* Role of Memory Models in ISAs

* What Should We Require From the Hardware?

* What Fences/Barriers Do We Need to Support C/C++?

* TriCheck Framework for Full-Stack Memory Model Verification
* On-Going Work & Conclusions

.l PRINCETON
UNIVERSITY

Sequential Consistency

 Memory models specify the allowed behavior of a multithreaded
program executing with shared memory

* First defined by [Lamport 1979], execution is the same as if:
(R1) Memory ops of each processor appear in program order

(R2) Memory ops of all processors were executed in some global
sequential order

& UNIVERSITY

Program i Legal Executions
Thread 0 Thread 1 1 x=1 X=1 X=1 r1=y 1=y r1=y
x=1 r1=y y=T r1=y r1=y r2=x x=1 x=1
y=1 r2=x Lorl=y y=1 r2=x x=1 r2=x =1
L r2=x r2=x y=1 y=1 y=1 r2=x

Two Categories of Memory Model Relaxation

Preserved Program Order: Defines program orderings that hardware must
preserve by default

Store Atomicity: Defines order in which stores become visible to cores

* Multiple-copy atomic: E.g., monolithic memory
* All cores see store simultaneously

* Read-Own-Write-Early-multiple-copy atomic: E.g., private store buffer
 Storing core can read its own store before other cores
* Stores made visible to all remote cores simultaneously

* Non-multiple-copy atomic: E.g., shared store buffer
 Storing core can read its own store before other cores
e Store is made visible to some remote cores before others

& UNIVERSITY

RISC-V Proposed Preserved Program Order
and Store Atomicity

Preserved Program Order:

After
R(DA) W(DA)
o PPOR(SA) Addr—Dep.|Ctrl. Dep.|Other W/(—S\A) Addr. DepiCtrlDep-{Data Dep.|Other
S| R [v (V) — - [(vV)qT v/ v v —
A W Ve — —)Lﬁ =

Store Atomicity:

Non-multiple-copy atomic:
 Storing core can read its own store before other cores
 Store is made visible to some remote cores before others

N PRINCETON
@ UNIVERSITY

Effects of Non—“ple—Copy Atomic Stores

Initial (lWﬁTions: =0“‘_‘
TR T

st[x] €1 st[y] €1 Idx =2 [r0] Idy =2 [r2]
FR,R FR,R

Idy =2 [r1] 1d x = [r3]
Non-SC Outcome*ﬂ, r1=0, r2=1, r3=0

This outcome corresponds to the case in which the
"% PRINCETON stores on threads TO and T1 arrive to threads T2

UNIVERSITY and T3 in different orders

Why Allow Non-Multiple-Copy Atomic Stores?

 Commercial ISAs allow non-multiple-copy atomic stores (e.g. ARM,
POWER)

* RISC-V is intended to be integrated with other vendor ISAs
* Potential deployment in non-multiple-copy atomic memory systems

* If sharing memory system, awareness that stores may be observed in
orders that differ from other cores

W PRINCETON
& UNIVERSITY

Outline

* Role of Memory Models in ISAs

 What Should We Require From the Hardware?

* What Fences/Barriers Do We Need to Support C/C++?

* TriCheck Framework for Full-Stack Memory Model Verification
* On-Going Work & Conclusions

.l PRINCETON
UNIVERSITY

Fences to Restore Multiple-Copy Atomicity

conditions: x=0, y=0
A0 T

T2 AT3)
(stix] €1 stlyl €1 (ldx > [10] /ﬁye[rz]

psck RW, RW ° pscF RW, RW
Idy =2 [r]] Id x = [r3]
Non-SC Outcome: r0=1, r1=0, r2=1, r3=0

Predecessor-/Successor- Cumulative Fence:

Necessary to Restore SC for Non-Multiple-Copy
Atomic Memory Systems

UNIVERSITY

Other Fences/Barriers/Ordering Primitives

e Baseline Memory Model
* PPO requires same-address R-R order to be maintained

* PPO requires order to be maintained between most dependent instructions
* Predecessor-/Successor-Cumulative F RW, RW; F IO, 10; F IORW, IORW

* Baseline + Atomics Extension
* Predecessor-Cumulative F RW, W

W PRINCETON
& UNIVERSITY

Outline

* Role of Memory Models in ISAs

 What Should We Require From the Hardware?

* What Fences/Barriers Do We Need to Support C/C++?

* TriCheck Framework for Full-Stack Memory Model Verification
* On-Going Work & Conclusions

.l PRINCETON
UNIVERSITY

TriCheck Full-Stack Verification Framework

Suite of C/C++
Litmus Tests ||

C/C++ Herd Model

Compiler Mappings from

C/C++ to RISC-V

TriCheck compares HLL
outcomes to ISA-level outcomes
for a spectrum of legal ISA
microarchitectures.

C/C++ Outcome Forbidden

Suite of Small
C/C++ Programs | [

RISC-V Check Model

e

PRINCETON
UNIVERSITY

ISA Level Outcome Forbidden

TriCheck Full-Stack Verification Framework

Suite of C/C++
Litmus Tests ||

C/C++ Herd Model

Compiler Mappings from

C/C++ to RISC-V

ISA DOES NOT ALLOW outcomes
prohibited by the ISA

C/C++ Outcome Forbidden

Suite of Small
C/C++ Programs | [

RISC-V Check Model

e

PRINCETON
UNIVERSITY

ISA Level Outcome Forbidden

TriCheck Full-Stack Verification Framework

Suite of C/C++
Litmus Tests ||

C/C++ Herd Model

Compiler Mappings from

C/C++ to RISC-V

ISA ALLOWS outcomes
prohibited by the ISA

C/C++ Outcome Forbidden

Suite of Small
C/C++ Programs | [

RISC-V Check Model

e

PRINCETON
UNIVERSITY

ISA Level Outcome Forbidden

Initial conditions: x=0, y=0

TO T1 T2

RISC-V Base: Lack of Cumulative Fences [rvac emnao

d: sw x2, (x6) g: Iw x4, (x5)

e Base RISC-V ISA lacks cumulative fences
* Minimally, the ISA requires a Predecessor-/Successor Cumulative F RW, RW
e Cannot fix bugs by modifying compiler currently

¥ & ®

ch‘Q Qq;Q Qq;o m Bugs m Overly Strict m Equivalent
NSNS
250
€ 200
he,
& 150
£ 100
@ 50
0 Our current RISC-V proposal requires
g g > only a P-/S-Cumulative F RW, RW in the
uSpec Model: . RISC-V Base ISA, and includes a weaker
Variation: : P-Cumulative F RW, W Fence in the
ariation: riIscv-curr . .
Base+Atomics extension.
Litmus test: wrc

PRINCE
UNIVER ISA RISC-V Baseline

Outline

* Role of Memory Models in ISAs

 What Should We Require From the Hardware?

* What Fences/Barriers Do We Need to Support C/C++?

* TriCheck Framework for Full-Stack Memory Model Verification
* On-Going Work & Conclusions

.l PRINCETON
UNIVERSITY

On-Going Work & Conclusions

* We have formulated an English language diff. of the current spec.
with our proposed changes

* Currently we are constructing a formal model in Herd [Alglave et al.,
TOPLAS “14] of our proposed memory model modifications

* Memory model design choices are complicated and involve reasoning
about the subtle interplay between many diverse features

* Defining an ISA specification in light of the evaluation of a single
microarchitecture is not sufficient

* TriCheck is generalizable to any ISA and uncovered/quantified flaws in
the RISC-V memory mode.

W PRINCETON
& UNIVERSITY

ctrippel@princeton.edu
http://check.cs.princeton.edu/

W PRINCETON
& UNIVERSITY

R I SC_V B a S e + A: L a C k Of - Initia!rclonditions: x=0, y=0 -

a: sw x1, (x5) b: Iw x2, (x5) d: amoadd.w.aq x0, x3, (x6)

Tra n S It I Ve Re | e a S e S c: amoswap.w.rl x2, x0, (x6) e: lw x4, (x5)

Forbidden HLL Outcome: x1=1, x2=1, x3=1, x4=0

e Base+A RISC-V ISA lacks transitive releases
* j.e., RISC-V acquires do not synchronize with RISC-V releases as required by C/C++

 AMO.rl and stronger AMO.aq.rl are both insufficeint

e Cannot fix bugs by modifying compiler
* QOur solution: redefine release operations in the Base+A RISC-V ISA to be transitive

) A O
250 R L)
0 200
9
E 150
= 100
3
- B
0
o e s S @ S)
uSpec Model: = 2 =z S = S =
ra res [c 2
Variation: .
riscv-curr
Litmus test: WrC

5N PRINCETO
6 UNIVERSIT isa RISC-V Baseline + Atomics (Base+A)

N 4

RISC-V Base+A: No Roach-Motel

a: amoswap.w.aq.rl x1, x0, (x4) c: amoadd.w.aq.rl x0, x2, (x5)
b: sw x1, (x5) d: amoadd.w.aq.rl x0, x3, (x4)

I\/l OVE M e nt fo I SC AtO M | CS Allowed Non-SC Outcome: x1=1, x2=1, x3=0

| Initial conditions: x=0, y=0

e RISC-V SC loads and stores require both ag and rl bits set on AMOs
* Operation has acquire and release semantics
* Prohibits roach-motel movement
e Qur solution: add an sc bit for implementing AMO.ag.sc and AMO.rl.sc instructions which are
capable of implementing C/C++ SC loads and stores

WBugs W Overly Strict Equivalent

90
© 75
2 60
£ us
©
§30 II I
()
=8 | |1 i1l
0 . . [|
*x xS S xS U x x > = £ = ¢
uSpec Model: §§§§%§§ §§§§%§§
[— c < (el - c <
Variation: riscv-curr riscv-curr
b Litmus test: mp sb

BE
A ISA: RISC-V Baseline + Atomics (Base+A)

R I SC‘V Ba Se: S ame Ad d ress Initial conditions: x=0, y=0

TO Tl

Ld—>Ld Re-Ordering s amees

 Base RISC-V ISA includes F R, R
* Possible to fix bugs by modifying compiler with potential performance penalty
* 20.3% preliminary estimate of fence insertion performance penalty for ARM
* Our solution: modify Base RISC-V memory model to require same-address Ld—>Ld ordering

& & & MBugs mOverly Strict ® Equivalent
Q AR
90 Ng NN
s 75
C
2 60
< 45
=
+ 30
()
- H BN
0
uSpec Model: WR rWR rWM rMM nWR nMM A9 ..
Our current RISC-V proposal elimites F R, R
Variation: riscv-curr from the RISC-V Base ISA, and requires

Litmus test: corr hardware to enforce same-address Ld—=>Ld
PRINCI order by default.

UNIVEFE (sa. RISC-V Baseline (Base)

Re-ordering Dependent Operations

* RISC-V does not require ordering for dependent instructions

* Many commercial ISAs — x86, ARM, Power — respect dependencies
e (Can also be used as lightweight synchronization

* Explicit synchronization/fences needed when dependency ordering
is required but not enforced by default, e.g., Linux
 Macro read_barrier _depends() optionally inserts a barrier

* Inserts a fence for Alpha, which does not respect dependencies!
* Inserts nothing for RISC-V, which does not respect dependencies?

e Qur solution: modify Base RISC-V memory model to require the
preservation of dependency orderings.

ILinus Torvalds et al. Linux kernel, 2016. https: //github.com/torvalds/linux/blob/master/arch/alpha/include/asm/barrier.h
2RISC-V Foundation. RISC-V port of Linux kernel, 2016. https://github.com/riscv/riscv-linux/blob/master/rch/riscv/include/asm/barrier.h

W PRINCETON
& UNIVERSITY

ctrippel@princeton.edu
http://check.cs.princeton.edu/

W PRINCETON
& UNIVERSITY

