
A	Memory	Consistency	Model	For	RISC-V
Formally	Evaluated	with	TriCheck

Caroline	Trippel
Princeton	University
November	29,	2016

Caroline	Trippel,	Yatin Manerkar,	Daniel	Lustig,	Michael	Pellauer,	and	Margaret	Martonosi.	“TriCheck:	Memory	Model	
Verification	at	the	Trisection	Software,	Hardware,	and	ISA”.	In Proceedings	of	the	Twenty-Second	International	
Conference	on	Architectural	Support	for	Programming	Languages	and	Operating	Systems (ASPLOS	'17).

Role	of	the	Instruction	Set	Architecture	(ISA)

Software/HLL

HardwareISA

Weak PPO	(e.g.,	ARM,	POWER)

More ordering	primitives	
(e.g.,	fences/barriers)	
inserted	by	compiler

• Introduced	in	1964	by	IBM
• 1	set	of	software
• >1	hardware	implementations

• Definitive	spec.	of	hardware	
as	seen	by	software:

• Specification	of	what	hardware	
must	implement

• Target	for	compiler	translation

Software/HLL

Hardware

ISA

Strong PPO	(e.g.,	SC,	TSO)

Fewer ordering	primitives	
(e.g.,	fences/barriers)	
inserted	by	compiler

Our	Work:	Memory	Consistency	Model	Verification

Software/HLL
Memory	Model

ISA
Memory	Model

Hardware
Memory	Model

Compilation

Microarchitectural	Implementation PipeCheck [Lustig et	al.	MICRO-47]
CCICheck [Manerkar et	al.	MICRO-48]

COATCheck [Lustig et	al.	ASPLOS	‘16]

ArMOR [Lustig et	al.	ISCA	‘15]

Operating	System

TriCheck [Trippel	et	al.	ASPLOS	‘17]

Memory	Models	Bugs	Observed	in	Practice

ARM	Read-after-Read	Hazard	[Alglave et	al.	TOPLAS	‘14]
• Ambiguous	ISA	spec.	regarding	same-address	LdàLd ordering

• ARM	compilers	did	not	insert	synchronization	primitives	(e.g.,	fences/barriers)
• Some	ARM	implementations	relaxed	same-address	LdàLd ordering	(e.g.,	
Cortex-A9,	Snapdragon	805)

• C/C++	atomics	require	same-address	LdàLd ordering
• ARM	issued	errata1:	Rewrite	compilers	to	insert	fences	(with	performance	
penalties)

We’ve	identified	and	characterized	flaws	in	the	current	RISC-V	
memory	model	(i.e.,	the	memory	model	defined	in	the	current	
manual)	[Trippel	et	al.	ASPLOS	‘17]

1ARM.	Cortex-A9	MPCore,	programmer	advice	notice,	read-after-read	hazards.	ARM	Reference	761319.,	2011.	
http://infocenter.arm.com/help/topic/com.arm.doc.	uan0004a/UAN0004A_a9_read_read.pdf.	

Note	that	the	modifications	to	fix	these	issues	will	be	mostly	
compatible	with	current	implementations.

Outline

• Role	of	Memory	Models	in	ISAs
• What	Should	We	Require	From	the	Hardware?
• What	Fences/Barriers	Do	We	Need	to	Support	C/C++?
• TriCheck Framework	for	Full-Stack	Memory	Model	Verification
• On-Going	Work	&	Conclusions

Sequential	Consistency

• Memory models specify the allowed behavior of a multithreaded
program executing with shared memory

• First defined by [Lamport 1979], execution is the same as if:
(R1) Memory ops of each processor appear in program order
(R2) Memory ops of all processors were executed in some global
sequential order

Thread 0
x=1
y=1

Thread 1
r1=y
r2=x

x=1
y=1
r1=y
r2=x

x=1
r1=y
y=1
r2=x

x=1
r1=y
r2=x
y=1

r1=y
r2=x
x=1
y=1

r1=y
x=1
r2=x
y=1

r1=y
x=1
y=1
r2=x

Program Legal Executions

Two	Categories	of	Memory	Model	Relaxation

Preserved	Program	Order:	Defines	program	orderings	that	hardware	must	
preserve	by	default
Store	Atomicity:	Defines	order	in	which	stores	become	visible	to	cores
• Multiple-copy	atomic:

• All	cores	see	store	simultaneously
• Read-Own-Write-Early-multiple-copy	atomic:

• Storing	core	can	read	its	own	store	before	other	cores
• Stores	made	visible	to	all	remote	cores	simultaneously

• Non-multiple-copy	atomic:
• Storing	core	can	read	its	own	store	before	other	cores
• Store	is	made	visible	to	some	remote	cores	before	others

E.g.,	monolithic	memory

E.g.,	private	store	buffer

E.g.,	shared	store	buffer

RISC-V	Proposed	Preserved	Program	Order	
and	Store	Atomicity
Preserved	Program	Order:

Store	Atomicity:
Non-multiple-copy	atomic:

• Storing	core	can	read	its	own	store	before	other	cores
• Store	is	made	visible	to	some	remote	cores	before	others

Effects	of	Non-Multiple-Copy	Atomic	Stores

Initial conditions: x=0, y=0
T0 T1 T2 T3

st [x] ç 1 st [y] ç 1 ld x à [r0] ld y à [r2]
F R, R F R, R

ld y à [r1] ld x à [r3]
Non-SC Outcome: r0=1, r1=0, r2=1, r3=0

This	outcome	corresponds	to	the	case	in	which	the	
stores	on	threads	T0	and	T1	arrive	to	threads	T2	
and	T3	in	different	orders

L1$

L1$

Why	Allow	Non-Multiple-Copy	Atomic	Stores?

• Commercial	ISAs	allow	non-multiple-copy	atomic	stores	(e.g.	ARM,	
POWER)

• RISC-V	is	intended	to	be	integrated	with	other	vendor	ISAs
• Potential	deployment	in	non-multiple-copy	atomic	memory	systems
• If	sharing	memory	system,	awareness	that	stores	may	be	observed	in	
orders	that	differ	from	other	cores

Outline

• Role	of	Memory	Models	in	ISAs
• What	Should	We	Require	From	the	Hardware?
• What	Fences/Barriers	Do	We	Need	to	Support	C/C++?
• TriCheck Framework	for	Full-Stack	Memory	Model	Verification
• On-Going	Work	&	Conclusions

Fences	to	Restore	Multiple-Copy	Atomicity

Initial conditions: x=0, y=0
T0 T1 T2 T3

st [x] ç 1 st [y] ç 1 ld x à [r0] ld y à [r2]
pscF RW, RW pscF RW, RW

ld y à [r1] ld x à [r3]
Non-SC Outcome: r0=1, r1=0, r2=1, r3=0

Predecessor-/Successor- Cumulative	Fence:	
Necessary	to	Restore	SC	for	Non-Multiple-Copy	
Atomic	Memory	Systems

Other	Fences/Barriers/Ordering	Primitives

• Baseline	Memory	Model
• PPO	requires	same-address	R-R	order	to	be	maintained
• PPO	requires	order	to	be	maintained	between	most	dependent	instructions
• Predecessor-/Successor-Cumulative	F	RW,	RW;	F	IO,	IO;	F	IORW,	IORW

• Baseline	+	Atomics	Extension	
• Predecessor-Cumulative	F	RW,	W

Outline

• Role	of	Memory	Models	in	ISAs
• What	Should	We	Require	From	the	Hardware?
• What	Fences/Barriers	Do	We	Need	to	Support	C/C++?
• TriCheck Framework	for	Full-Stack	Memory	Model	Verification
• On-Going	Work	&	Conclusions

TriCheck Full-Stack	Verification	Framework

Suite	of	C/C++	
Litmus	Tests

Suite	of	Small	
C/C++	Programs

Compiler	Mappings	from	
C/C++	to	RISC-V

C/C++	Herd	Model RISC-V	Check	Model

ISA	Level	Outcome	ForbiddenC/C++	Outcome	Forbidden implies

TriCheck compares	HLL	
outcomes	to	ISA-level	outcomes	

for	a	spectrum	of	legal	ISA	
microarchitectures.

TriCheck Full-Stack	Verification	Framework

Suite	of	C/C++	
Litmus	Tests

Suite	of	Small	
C/C++	Programs

Compiler	Mappings	from	
C/C++	to	RISC-V

C/C++	Herd	Model RISC-V	Check	Model

ISA	Level	Outcome	ForbiddenC/C++	Outcome	Forbidden implies

ISA	DOES	NOT	ALLOW	outcomes	
prohibited	by	the	ISA

TriCheck Full-Stack	Verification	Framework

Suite	of	C/C++	
Litmus	Tests

Suite	of	Small	
C/C++	Programs

Compiler	Mappings	from	
C/C++	to	RISC-V

C/C++	Herd	Model RISC-V	Check	Model

ISA	Level	Outcome	ForbiddenC/C++	Outcome	Forbidden implies

ISA	ALLOWS	outcomes	
prohibited	by	the	ISA

RISC-V	Base:	Lack	of	Cumulative	Fences

0
50
100
150
200
250

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

riscv-curr riscv-ours

wrc

RISC-V	Baseline	(Base)

Te
st
	Va

ria
tio

ns
Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:

Litmus	test:	

ISA:

• C/C++	acquire/release	synchronization	is	transitive:	
• Accesses	before	a	release	write	in	program	order,	and	observed	by	the	

releasing	core	prior	to	the	release	write must	be	ordered	before	the	release	
from	the	viewpoint	of	an	acquire	read	that	reads	from	the	release	write

• Base	RISC-V	ISA	lacks	cumulative	fences
• Minimally,	the	ISA	requires	a	Predecessor-/Successor	Cumulative	F	RW,	RW
• Cannot	fix	bugs	by modifying	compiler	currently

Our	current	RISC-V	proposal	requires	
only	a	P-/S-Cumulative	F	RW,	RW	in	the	
RISC-V	Base	ISA,	and	includes	a	weaker	
P-Cumulative	F	RW,	W	Fence	in	the	
Base+Atomics extension.

Outline

• Role	of	Memory	Models	in	ISAs
• What	Should	We	Require	From	the	Hardware?
• What	Fences/Barriers	Do	We	Need	to	Support	C/C++?
• TriCheck Framework	for	Full-Stack	Memory	Model	Verification
• On-Going	Work	&	Conclusions

On-Going	Work	&	Conclusions

• We	have	formulated	an	English	language	diff.	of	the	current	spec.	
with	our	proposed	changes

• Currently	we	are	constructing	a	formal	model	in	Herd	[Alglave et	al.,	
TOPLAS	‘14]	of	our	proposed	memory	model	modifications

• Memory	model	design	choices	are	complicated	and	involve	reasoning	
about	the	subtle	interplay	between	many	diverse	features

• Defining	an	ISA	specification	in	light	of	the	evaluation	of	a	single	
microarchitecture	is	not	sufficient

• TriCheck is	generalizable	to	any	ISA and	uncovered/quantified	flaws	in	
the	RISC-V	memory	mode.

ctrippel@princeton.edu
http://check.cs.princeton.edu/

21

RISC-V	Base+A:	Lack	of
Transitive	Releases

• C/C++	acquire/release	synchronization	is	transitive:	
• Accesses	before	a	release	write	in	program	order,	and	observed	by	the	

releasing	core	prior	to	the	release	write must	be	ordered	before	the	release	
from	the	viewpoint	of	an	acquire	read	that	reads	from	the	release	write

0

50

100

150

200

250

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

W
R	

rW
R	

rW
M
	

rM
M
	

nW
R	

nM
M
	

A9
lik
e	

riscv-curr riscv-ours

wrc	

RISC-V	Baseline	+	Atomics	(Base+A)

Te
st
	Va

ria
tio

ns
Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:

Litmus	test:	

ISA:

• Base+A RISC-V	ISA	lacks	transitive	releases	
• i.e.,	RISC-V	acquires	do	not	synchronize	with	RISC-V	releases	as	required	by	C/C++
• AMO.rl and	stronger	AMO.aq.rl are	both	insufficeint
• Cannot	fix	bugs	by modifying	compiler

• Our	solution: redefine	release	operations	in	the	Base+A RISC-V	ISA	to	be	transitive

0
15
30
45
60
75
90

W
R
	

rW
R
	

rW
M
	

rM
M
	

nW
R
	

nM
M
	

A
9l
ik
e	

W
R
	

rW
R
	

rW
M
	

rM
M
	

nW
R
	

nM
M
	

A
9l
ik
e	

W
R
	

rW
R
	

rW
M
	

rM
M
	

nW
R
	

nM
M
	

A
9l
ik
e	

W
R
	

rW
R
	

rW
M
	

rM
M
	

nW
R
	

nM
M
	

A
9l
ik
e	

riscv-curr riscv-ours riscv-curr riscv-ours

mp sb

RISC-V	Baseline	+	Atomics	(Base+A)

Te
st
	V
ar
ia
ti
on
s

Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:	

Litmus	test:	

ISA:

RISC-V	Base+A:	No	Roach-Motel
Movement	for	SC	Atomics
• Roach-motel	movement	=	expansion	of	acquire-release	

critical	section
• C++SC	load	have	C++Acquire	semantics
• C++SC	stores	have	C++Release	semantics

• RISC-V	SC	loads	and	stores	require	both	aq and	rl bits	set	on	AMOs
• Operation	has	acquire	and	release	semantics
• Prohibits	roach-motel	movement

• Our	solution: add	an	sc bit	for	implementing	AMO.aq.sc and	AMO.rl.sc instructions	which	are	
capable	of	implementing	C/C++	SC	loads	and	stores

RISC-V	Base:	Same	Address
LdàLd Re-Ordering

• C/C++	forbids	same-address	LdàLd reordering
• Bugs	always	when	C/C++	loads	are	mapped	to	regular	RISC-V	loads

0
15
30
45
60
75
90

WR	 rWR	rWM	rMM	nWR	nMM	 A9	 WR	 rWR	rWM	rMM	nWR	nMM	 A9	

riscv-curr riscv-ours

corr

RISC-V	Baseline	(Base)

Te
st
	Va

ria
tio

ns
Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:

Litmus	test:	

ISA:

Initial conditions: x=0, y=0

T0 T1

a: sw x1, (x5) c: lw x3, (x5)

b: sw x2, (x5) d: lw x4, (x5)

Forbidden HLL Outcome: x1=1, x2=2, x3=2, x4=1• Base	RISC-V	ISA	includes	F	R,	R
• Possible	to	fix	bugs	by	modifying	compiler	with	potential	performance	penalty
• 20.3%	preliminary	estimate	of	fence	insertion	performance	penalty	for	ARM

• Our	solution: modify	Base	RISC-V	memory	model	to	require	same-address	LdàLd ordering

Our	current	RISC-V	proposal	elimites F	R,	R	
from	the	RISC-V	Base	ISA,	and	requires	
hardware	to	enforce	same-address	LdàLd
order	by	default.

Re-ordering	Dependent	Operations
• RISC-V	does	not	require	ordering	for	dependent	instructions
• Many	commercial	ISAs	– x86,	ARM,	Power	– respect	dependencies

• Can	also	be	used	as	lightweight	synchronization	

• Explicit	synchronization/fences	needed	when	dependency	ordering	
is	required	but	not	enforced	by	default,	e.g.,	Linux

• Macro	read_barrier_depends()	optionally	inserts	a	barrier	
• Inserts	a	fence	for	Alpha,	which	does	not	respect	dependencies1

• Inserts	nothing	for	RISC-V,	which	does	not	respect	dependencies2

• Our	solution:	modify	Base	RISC-V	memory	model	to	require	the	
preservation	of	dependency	orderings.

1Linus	Torvalds	et	al.	Linux	kernel,	2016.	https:	//github.com/torvalds/linux/blob/master/arch/alpha/include/asm/barrier.h
2RISC-V	Foundation.	RISC-V	port	of	Linux	kernel,	2016.	https://github.com/riscv/riscv-linux/blob/master/rch/riscv/include/asm/barrier.h

ctrippel@princeton.edu
http://check.cs.princeton.edu/

26

