

Joined up debugging and analysis in the RISC-V world RISC-V Workshop November 29-30 2016

Agenda

- Some obvious statements
- Key Requirements
- Some examples of Performance analysis and Debug
- Use cases
- Demos

Some obvious statements

- SoCs have become increasingly complicated and they are not going to get simpler.
 - Contain several processors, from different vendors
 - Contain 100s of SIP
 - Contain complex interconnects
 - Software created by large disparate teams.
 - All this has to successfully work together
- Debugging is more that just Run-control
- It is more than just CPU centric information such as instructions trace
- These are important but are only parts of the problem
- In order for RISCV to be successful it must be useable in systems constructed as above.

Key requirements

- A vendor-neutral debug infrastructure
 - One that enables access to different proprietary debug schemes used today by various cores
 - Allows for monitors into interconnects, interfaces and custom logic
 - These need to be run-time configurable
 - Re-use the hardware to provide visibility for different scenarios.
 - Run-time configuration of cross-triggering
 - Support 10s if not 100s of cross-triggering events
 - These can be interrogated after a problem to determine actual status
 - Need to be power aware
 - Security built-in
 - Can be used during the whole development flow and more importantly in the field

UltraSoC Technologies

- VC funded start-up based in Cambridge UK
- Members of the foundation.
- Part of the Debug Task Group
- Provides Silicon IP + tools
 - System wide On-chip debug, optimization, analytics, forensics, bare metal security
- Partnership with other IP vendors.
 - e.g. IMG, Ceva, Cadence, Codasip, Baysand
- Partnership with leading tool vendors
 - e.g. Lauterbach, Ceva
- Mature, silicon proven product

ultrasoc

Advanced Debug for the Whole SoC

UL-001283-PT

Some examples of Performance analysis and debug

Example of UltraSoC Enabled SoC

UL-001283-PT

UL-001283-PT

ultra soc

Example 2: DDR Bandwidth

Example 3 : Deadlock Detection

- Many different types but consider this as an example
 - CPU (master) asserts arvalid and issues a read address to the Slave
 - Slave asserts rvalid and outputs read data but never sees rready asserted
- Configure bus monitor trace to trigger when transaction duration exceeds threshold (programmable up to 16k cycles)
 - Trace not output until triggered.
 - When triggered by deadlocked transaction, trace will output most recent transactions up to and including the deadlocked transaction
 - Trace identifies transaction ID and address, identifying both master and slave of deadlocked transaction

Example 4 : Data Corruption Detection

To detect the initiators doing write access to a same memory location (or a range) - MemAddress. We can configure our Bus Monitor do something like:

```
if <Address> == MemAddress && <RW> == Write
then if Count > 1
        CaptureTrace()
        SendEventMessage()
        else
        IncrementCount()
fi
```

Where:

- <> are AXI bus fields being observed by the bus monitor.
- CaptureTrace() puts the transaction into the trace buffer
- SendEventMessage() is an instruction to the monitor to send an event out on our message bus
- IncrementCount increments the counter by 1
- NB This is pseudo-code actual filtering is down in hardware and not software

Cross Triggering – Example 1

Runtime Configuration

- Bus Monitor A outputs Event on DMA access
- Set the period of the Status Monitor's Interval Timer
- Configure the Status Monitor to observe the following sequence:

- Output trigger from SM when entering the STALL state
- Configure Trace Receiver(s) to enable tracing on receipt of trigger

Example ARM Subsystem

29 November 2016

UL-001283-PT

Cross Triggering – Example 1 (cont)

Key Features

Non-intrusive	Debug does not impact system performance		
"Smart" monitors	Detect items of interest in hardware, at wirespeed. Massively reduce trace bandwidth & memory. Home in on problems efficiently		
Protocol-aware bus monitors (AXI, ACE, ACE- lite, OCP, OCP 2.0, CHI etc.)	Identify specific transactions; easily spot problems		
Full support for all standard processors (ARM, RISC-V, MIPS, Xtensa, CEVA, etc.)	Easily support heterogeneous architectures; "mix & match" across vendors; fix hardware, software or HW+SW integration problems		
Message-based protocol	Easy to place & route; extensible & versatile; allows local processor for "autonomous" control in the field		
Powerful status monitor	Configurable smart logic analyzer for custom logic		
Secure	Powerful security architecture		
Bare Metal Security	Provides for observation of target system in order to raise 'alarm'		
29 November 2016	UL-001283-PT 17		

"Smart" Modules Optimize Bandwidth

- Configured with filter, match logic for triggers
- Configurable buffer size & number of filters
- Gather statistics (best, worst, average) in hardware at wirespeed
- Only meaningful information is sent
- Reduces trace and performance data bandwidth
- Show relevant information: focus on issues and find problems faster

Status Monitoring: Custom Logic

- Rich support for custom logic; arbitrary functions or common building blocks
- Event counter and trigger
 - System events
 - Processor events
 - Error events
- Accumulator
 - Capture time-averaged values
 - Average FIFO depths
 - Performance counter
- Analyser
 - State-machine trace
 - Data trace
 - Logic analyser

USB Debug: Share Interfaces

- Fast access to debug
- No need for dedicated debug port
- ("closed chassis debug")
- Hub bypassed in functional mode
- Hub active in debug mode
- No extra processor needed
- No changes to software
- No interactions with system
- Security Support

Security in the UltraSoC domain

- All messages fully encrypted
- All modules individual access control
- Secure debug interfaces
 - Challenge response authentication
 - Encrypted debug traffic
 - Enables in-field debug
- Layered security for globalised development
 - Different access rights for each user group
 - Hierarchical security gates
 - Uses proven techniques

Portfolio of 30 Modules

- Most modules are non-intrusive and "listen" e.g.
 - Bus monitor AXI, AXI4, OCP2.1, ACE, CHI, OCP etc.
 - Status monitor
 - Static Instrumentation
 - Instruction Trace
- But some are active e.g.
 - UltraSoC DMA
 - Virtual Console
- Communicators e.g.
 - Universal Streaming Communicator
 - System memory Buffer
 - Serial
 - JTAG
 - USB
 - AXI
- Message infrastructure

Summary

- UltraSoC provides a complete advanced universal on-chip analytic and debug platform
 - Full visibility of whole SoC
 - Non-intrusive
 - Independent provider enabling free-selection of IP
 - Multi-vendor and multi-processor in one environment
 - USB connectivity for faster debug or I/O constrained devices
 - Advanced analytics: forensics, optimization, dynamic, power saving
 - Bare metal security
 - Low-power and power-down; power domains & clock domains
 - Full support for large heterogeneous SoC
 - Fully message-based communication
 - Data-flow management and security
 - Silicon proven
- RISC-V foundation needs
 - Standardise on Debug Interface
 - Standardise on Instruction trace

Use Cases

Classic Debug

- In this case the SoC may be on a prototype board or in the final product form.
- This allows for device validation and bring-up.
- Typically done with board attached to work station.
- CPU breakpoints, starting, stopping of software executing on the SoC.
- More and more of the system will be integrated (brought up) and exploration of the whole SoC, under realistic conditions, takes place.

🖕 Project Explorer 😂 🛛 🖹 😫 🖤 🖤 🗖	🙄 *quartz_display_rw_all.udt 🔄 julia.c 😂 🦳 🗁	IN Monitor Counters	55	B • * D	X Monitor Matc. X D	ownstream 🕷	Monitor Time 21
O mutatore O	<pre>bit = - 1.0 + (1c/1202 017);</pre>	Time Mobile 2954452355:cbm2 2954452355:cbm2 2954552355:cbm2 2950455255:cbm2 2961452555:cbm2 2961452555:cbm2 2961452355:cbm2 2964522352:cbm2 2970858202:cbm1 2970858202:cbm1 2970858202:cbm2 2970858202:cbm2 2970858202:cbm2 2970858202:cbm2 2970858202:cbm2 2970858202:cbm2 2970858202:cbm2 2970858202:cbm2 2970858202:cbm2 297085255:cbm2 2970852555:cbm2	Qualifier Coxu an monito port 10 ani monito port 0 ani monito port 0 ani monito port 0 ani monito port 10 ani monito port 0	* * * * * * * * * * * * * * * * * * *	wimi0 0 1 100000 0 1 wimi1 100000 0 1 wimi30 0 0 1 wimi31 0 0 1 wimi30 0 0 1 wimi3 0 0 1 ymi3 1 0 1 2000x00000 1 1 1		
Sort By: Hierarchy .		E Monitor Data	Traffic Generatorr D Me	more Configuration	BP Diversemble 10-Maria	ther 2	-
+ 🗸 mel (message_engine) 🕹 +	1	a women bata	manic deficiations () me	mory 🚽 connigoration	a ar biodsserieby valie	E SALE	144.0121401714
🖌 jaml (jam) 🕹	*	Name		Type		Value	
	Offend contexts 11 Contexts 01 Example 101 Schwarter 101 Schwarter 101 Example 101	×1			H		

In field debugging and analysis

- In this case the SoC is in the final form and issues such as integration of the software can be debugged.
- The performance of the system can be analysed.
- The software being used could be the IDE as shown previously or specific views of key flows of data through the system.
 - These could be traffic to the memory controller
 - DMA completion times
 - Depth of FIFOs in RF interface
 - Performance of processing engines within the SoC
 - Cache behaviour
 - Etc.
- This can be used to help diagnose why a product has 'hung-up' in the field. During operation the device has been continuously capturing trace in circular buffers in the monitors. This effectively gives a system wide core dump.
 - Trace data is extracted from the device and analysed and replayed to give the last N transaction before the failure occurred.
 - The device does not need to be attached as the trace could have been extracted in the field and shipped to the manufacturer

29 November 2016

In field analysis

- The areas of interest can be extracted from the system-core dump and specific views created which can be analysed by domain specific engineers
 - These could be memory controller designers, RF interface designers etc.
- Traces extracted from the field can be used for the next generation architecture of the SoC

Corporate and IoT use – Performance and Security

- Monitoring of server farms
 - An example would be observing utilisation of the individual servers and the resources such as memory and disks
 - DDoS can be reported back to root/base.
 - Security and safety can be monitored in a similar manner
 - Updates would be maintained by the root/base.
 - Any breaches of security can be reported back to base.

Standalone and unconnected use

- In this there is a self contained Analytics Subsystem.
 - Any communication, if required is done over the air.
 - Many systems will not even have wireless connection
- Detect unauthorized access
 - e.g. processors reading from key store
 - e.g. Attempt to read decrypted boot code
- Update audit & verification
- Scan internal/external regions
- Detect frequent access / DoS
- Ensure system operates in the 'bounds of safety'.
 - If any divergence, invoke fail safe state

Demonstration

Demo System Architecture

- Zynq FPGA platform
 - ARM
 + Rocket RV32 RISCV
 + custom logic
- Demo shows:
 - Bus state
 - Traffic
 - Performance histogram
 - Memory
 - Processor control

Demonstration Features

- Heterogeneous multi-core + Custom logic
- 2 x ARM A9 + Rocket RISC-V
- Processor status & code visibility (three processors)
- AXI Bus Monitor counters (read/write bytes) & trace
- Status Monitor for custom logic (FIFO, traffic source + sink)
- UltraSoC DMA access (read/write to system memory)
- Heterogeneous CPU run and halt
- USB 2.0 Debug Hub connectivity
- Deadlock detection

ultra soc