Technical Committee Update

Yunsup Lee and Silviu Chiricescu

yunsup@sifive.com
silviu.chiricescu@baesystems.com

29 November 2016
Immediate Goals
Immediate Goals

- To maintain a roadmap of the RISC-V ISA
Immediate Goals

- To maintain a roadmap of the RISC-V ISA
- To provide and maintain a golden simulator for the RISC-V ISA
Immediate Goals

- To maintain a roadmap of the RISC-V ISA
- To provide and maintain a golden simulator for the RISC-V ISA
- To provide and maintain a set of verification/validation tests to ensure conformance with the evolving RISC-V ISA and its extensions
Immediate Goals

- To maintain a roadmap of the RISC-V ISA
- To provide and maintain a golden simulator for the RISC-V ISA
- To provide and maintain a set of verification/validation tests to ensure conformance with the evolving RISC-V ISA and its extensions
- To upstream the software development tools (compiler, debugger, etc.)
Immediate Goals

- To maintain a roadmap of the RISC-V ISA
- To provide and maintain a golden simulator for the RISC-V ISA
- To provide and maintain a set of verification/validation tests to ensure conformance with the evolving RISC-V ISA and its extensions
- To upstream the software development tools (compiler, debugger, etc.)
- To maintain and update a list of hardware implementations of the architecture
Longer Term Goals

- Establish processes to define and standardize future ISA extensions
Longer Term Goals

- Establish processes to define and standardize future ISA extensions
- Provide guidelines for platform integration to avoid fragmentation in the RISC-V software ecosystem
Longer Term Goals

- Establish processes to define and standardize future ISA extensions
- Provide guidelines for platform integration to avoid fragmentation in the RISC-V software ecosystem
- Setting up program committees for future RISC-V workshops to make it a prominent venue to present in-progress work related to RISC-V
Technical Committee Task Groups

- Currently consists of 7 task groups:
Technical Committee Task Groups

- Currently consists of 7 task groups:
 - Opcode space management, Krste Asanovic, UC Berkeley
Technical Committee Task Groups

- Currently consists of 7 task groups:
 - Opcode space management, Krste Asanovic, UC Berkeley
 - Privileged ISA specification, Andrew Waterman, SiFive
Technical Committee Task Groups

- Currently consists of 7 task groups:
 - Opcode space management, Krste Asanovic, UC Berkeley
 - Privileged ISA specification, Andrew Waterman, SiFive
 - Formal specification, Rishiyur Nikhil, Bluespec
Technical Committee Task Groups

- Currently consists of 7 task groups:
 - Opcode space management, Krste Asanovic, UC Berkeley
 - Privileged ISA specification, Andrew Waterman, SiFive
 - Formal specification, Rishiyur Nikhil, Bluespec
 - Debug specification, Tim Newsome, SiFive
Technical Committee Task Groups

- Currently consists of 7 task groups:
 - Opcode space management, Krste Asanovic, UC Berkeley
 - Privileged ISA specification, Andrew Waterman, SiFive
 - Formal specification, Rishiyur Nikhil, Bluespec
 - Debug specification, Tim Newsome, SiFive
 - Security, Joe Xie, NVIDIA
Technical Committee Task Groups

- Currently consists of 7 task groups:
 - Opcode space management, Krste Asanovic, UC Berkeley
 - Privileged ISA specification, Andrew Waterman, SiFive
 - Formal specification, Rishiyur Nikhil, Bluespec
 - Debug specification, Tim Newsome, SiFive
 - Security, Joe Xie, NVIDIA
 - Vector extensions, Krste Asanovic, UC Berkeley
Technical Committee Task Groups

- Currently consists of 7 task groups:
 - Opcode space management, Krste Asanovic, UC Berkeley
 - Privileged ISA specification, Andrew Waterman, SiFive
 - Formal specification, Rishiyur Nikhil, Bluespec
 - Debug specification, Tim Newsome, SiFive
 - Security, Joe Xie, NVIDIA
 - Vector extensions, Krste Asanovic, UC Berkeley
 - SW tool chain, Arun Thomas, BAE Systems
Technical Committee Task Groups

- Currently consists of 7 task groups:
 - Opcode space management, Krste Asanovic, UC Berkeley
 - Privileged ISA specification, Andrew Waterman, SiFive
 - Formal specification, Rishiyur Nikhil, Bluespec
 - Debug specification, Tim Newsome, SiFive
 - Security, Joe Xie, NVIDIA
 - Vector extensions, Krste Asanovic, UC Berkeley
 - SW tool chain, Arun Thomas, BAE Systems

- Task groups could be added/phased out as needed
Opcode Management TG

Agree/tweak plan, assign more leaders and doers
Agree/tweak plan, assign more leaders and doers

- Debug spec ratified by Foundation
- Calling convention fixed and documented
- ELF format fixed and documented
- Priv-1.10.0
- M-mode/S-mode changes must be backwards-compatible after this date
Agree/tweak plan, assign more leaders and doers

Memory model changes must be backwards-compatible after this date

- Debug spec ratified by Foundation
- Calling convention fixed and documented
- ELF format fixed and documented
- Priv-1.10.0
- M-mode/S-mode changes must be backwards-compatible after this date
Opcode Management TG

A gree/tweak plan, assign more leaders and doers

Memory model changes must be backwards-compatible after this date
 * Priv-1.11.0
 * RV32EMAC RV32IMAFDQC RV64IMAFDQC ratified

* Debug spec ratified by Foundation
* Calling convention fixed and documented
* ELF format fixed and documented
* Priv-1.10.0
* M-mode/S-mode changes must be backwards-compatible after this date

29 November 2016

RISC-V Foundation
Opcode Management TG

A few months ago, the Opcode Management TG

- Agree/tweak plan, assign more leaders and doers
- Memory model changes must be backwards-compatible after this date
 - Priv-1.11.0
 - RV32EMAC RV32IMAFDQC RV64IMAFDQC ratified
 - Priv-1.12.0

- Debug spec ratified by Foundation
- Calling convention fixed and documented
- ELF format fixed and documented
- Priv-1.10.0
- M-mode/S-mode changes must be backwards-compatible after this date
Agree/tweak plan, assign more leaders and doers

Memory model changes must be backwards-compatible after this date

* Priv-1.11.0
* RV32EMAC RV32IMAFDQC RV64IMAFDQC ratified

Priv-1.12.0

* Debug spec ratified by Foundation
* Calling convention fixed and documented
* ELF format fixed and documented
* Priv-1.10.0
* M-mode/S-mode changes must be backwards-compatible after this date

* V ratified by Foundation
* Priv-1.13.0 -> Priv-2.0 ratified?
* Complete Linux/KVM platform spec agreed, supports other OS (FreeBSD etc.)
Privileged ISA Spec TG

- Charter
 - To define and specify a unified RISC-V privileged architecture and hardware platform
Privileged ISA Spec TG

▪ Charter
 – To define and specify a unified RISC-V privileged architecture and hardware platform

▪ Goals
 – Version 1.10 of supervisor-mode and machine-mode architecture proposal by Feb ’17
 – no backwards-incompatible changes after this point
 – Complete Unix platform spec proposal, incl. hypervisor support, by Nov ’17
 – Ratification end of ’17/beginning of ’18
Formal Spec TG
Formal Spec TG

- Charter
 - To produce a *formal* specification of the RISC-V ISA that is
 - Implementation independent (no micro-arch details), high level, executable, suitable for mechanized formal tools
 - Complementary/in addition to the textual ISA spec docs
Formal Spec TG

- **Charter**
 - To produce a *formal* specification of the RISC-V ISA that is
 - Implementation independent (no micro-arch details), high level, executable, suitable for mechanized formal tools
 - Complementary/in addition to the textual ISA spec docs

- **Initial Targets**
 - Just the basic ISA (RV32 and RV64) and the common standard extensions (I, M)
 - For F/D, since it is IEEE standard, not sure we have much to contribute
Formal Spec TG

- **Charter**
 - To produce a *formal* specification of the RISC-V ISA that is
 - Implementation independent (no micro-arch details), high level, executable, suitable for mechanized formal tools
 - Complementary/in addition to the textual ISA spec docs

- **Initial Targets**
 - Just the basic ISA (RV32 and RV64) and the common standard extensions (I, M)
 - For F/D, since it is IEEE standard, not sure we have much to contribute

- **Status**
 - Basic spec: Models written in L3 (SRI), in BSV (Bluespec), in Coq (MIT)
 - Memory model: Two talks this morning
Debug Spec TG

- Charter
 - To specify a standardized way to debug RISC-V cores
Charter
- To specify a standardized way to debug RISC-V cores

Status
- There are 2 spec proposals
 - Instruction stuffing/fetching, SiFive
 - Memory-mapped IO interface, ROA Logic
- Could use insight of the people who are going to do the hardware implementation. Meeting Thursday at 11am.
Debug Spec TG

- **Charter**
 - To specify a standardized way to debug RISC-V cores

- **Status**
 - There are 2 spec proposals
 - Instruction stuffing/fetching, SiFive
 - Memory-mapped IO interface, ROA Logic
 - Could use insight of the people who are going to do the hardware implementation. Meeting Thursday at 11am.

- **Goals**
 - Ratification Feb ’17
Security TG

- Charter
 - Define RISC-V security extension specification including:
 - Secure processing model and necessary ISA support
 - Crypto algorithm instructions (AES, SHA, RSA, ECC, Random)
 - Provide necessary HW/SW support according to the spec
Security TG

- **Charter**
 - Define RISC-V security extension specification including:
 - Secure processing model and necessary ISA support
 - Crypto algorithm instructions (AES, SHA, RSA, ECC, Random)
 - Provide necessary HW/SW support according to the spec

- **Goals**
 - Security extension spec 0.9 open to public review by the 6th workshop
Security TG

- **Charter**
 - Define RISC-V security extension specification including:
 - Secure processing model and necessary ISA support
 - Crypto algorithm instructions (AES, SHA, RSA, ECC, Random)
 - Provide necessary HW/SW support according to the spec

- **Goals**
 - Security extension spec 0.9 open to public review by the 6th workshop

- **Meetings**
 - every other Wed from 6-7 PST. Meeting Thursday 1pm.
Software Tool Chain TG
Software Tool Chain TG

- Charter:
 - To define a standard, easy to build and use software toolchain for the RISC-V ecosystem
Software Tool Chain TG

- **Charter:**
 - To define a standard, easy to build and use software toolchain for the RISC-V ecosystem

- **Goals:**
 - Documenting current SW stack https://github.com/arunthomas/riscv-sw/wiki
 - Upstreaming (Binutils, GCC, LLVM, etc.)
 - QEMU: Update to priv 1.9.1, device support
 - Creating an ABI specification
 - Continue to push on Linux distribution support (e.g., Debian, Fedora)
 - Documentation
 - Docker images, cross-toolchain packages in Linux distros
Call for Participation
Call for Participation

- All member organizations should nominate a person for the technical committee
 - If not, please contact us
Call for Participation

- All member organizations should nominate a person for the technical committee
 - If not, please contact us
- Please let us know if you’d like to participate in a TG or start a TG
 - Your help is needed
 - Come to tech committee meeting on Thursday 8:30am
Call for Participation

- All member organizations should nominate a person for the technical committee
 - If not, please contact us
- Please let us know if you’d like to participate in a TG or start a TG
 - Your help is needed
 - Come to tech committee meeting on Thursday 8:30am
- Finally, thank you for your contribution!

29 November 2016
Call for Participation

- All member organizations should nominate a person for the technical committee
 - If not, please contact us
- Please let us know if you’d like to participate in a TG or start a TG
 - Your help is needed
 - Come to tech committee meeting on Thursday 8:30am
- Finally, thank you for your contribution!
- Any questions?