RISC-V in WIDLA

6th RISC-V Workshop, Shanghai, May 2017

Falcon: NVIDIA's proprietary RISC

- Falcon = FAst Logic CONtroller
- General purpose embedded processor
- Design started in ~2005; production ~2007

Falcon's history

- Embedded in 15+ designs
- Taped out in ~50 chips
- Shipped ~3 billion times
- No stop-ship bugs

Falcons shipped estimate			
dGPU Volume / year	50M*		
Years Falcon shipping	10		
Avg. #Falcons / GPU	10		
Avg. NVIDIA market share	60%		
Total shipped	3 billion		

http://www.anandtech.com/show/10864/discrete-desktop-gpu-market-trends-q3-2016

Why replace such a successful design?

Use cases getting more complex

- Large complex SW
- External SW
- Threaded SW
- Large virtual memory space

Falcon limitations

- Low performance
- No caches (Icache added lately)
- No thread protection
- 32-bit address range
- One size fits all

Selecting the next architecture

Technical criteria

- >2x performance of Falcon
- <2x area cost of Falcon</p>
- Support for caches as well tightly coupled memories
- 64-bit addresses
- Suitable for modern OS

Considered architectures

ARM

- Imagination Technologies MIPS
- Synopsys ARC
- Cadence Tensilica
- RISC-V

Why RISC-V for Falcon Next

RISC-V is the only architecture that meets all our criteria https://riscv.org/wp-content/uploads/2016/07/Tue1100 Nvidia RISCV Story V2.pdf

ltem	Requirement	ARM A53	ARM A9	ARM R5	RISC-V Rocket	NV RISC-V
Core perf	>2x falcon	Yes	Yes	Yes	Yes	Yes
Area (16ff)	<0.1mm^2	No	No	Yes	Yes	Yes
Security	Yes	TZ	TZ	No	Yes	Yes
ТСМ	Yes	Yes	No	Yes	No	Yes
L1 I/D \$	Yes	Yes	Yes	Yes	Yes	Yes
Addressing	64bit	Yes	No	No	Yes	Yes
Extensible ISA	Yes	No	No	No	Yes	Yes
Safety (ECC/Parity)	Yes	Yes	Yes	Yes	Yes	Yes
Functional Simulation model	Yes	Yes	No	No	No	Yes

Scalability - beyond Falcon replacement

- Falcon ISA is monolithic
- RISC-V is flexible
 - 32,64, and 128-bit versions
 - Cost/performance and supervisor options
 - Custom extensions
- NV-RISCV uses RV64IM_Sdef ISA
- New opportunities
 - Address lower cost and higher perf problems
 - Backward compatibility allows opening up to 3rd party programmers
 - Mix and match internally and externally developed cores

Open source architecture

Control

- Match NVIDIA interfaces and tools
- Original reason for Falcon

Quality

- Large community of contributors
- E.g. memory model tuning
- Cost of ownership
 - No license, royalty fees
 - ISA, tools from community

	Licensed (ARM)	NVIDIA proprietary (Falcon)	Open source (RISC-V)
Control	-	+	+
Quality	0	0	+
Cost	-	-	+

Why contribute to RISC-V?

Polder model: cooperation despite differences Benefit from thriving RISC-V community and architecture

Influence the direction so RISC-V and (y)our interests align

Memory model workgroup

Daniel Lustig chairing the workgroup
Presentation on Wednesday
Workgroup meeting on Thursday

Why is it important to NVIDIA?

Jetson TX2

- ~20 CPU cores
- 256 GPU cores
- Complex bus topology
- Coherent and non-coherent traffic

💿 nvidia

What is the problem?

Core0	Core1
{[a] == 1}	{[b] == 1}
ld [a] → x	ld [b] \rightarrow y
st [b], 0	st [a], 0
{x == 0}	$\{y == 0\}$

That obviously cannot happen!

What is the problem?

1}

Core0	Core1
{[a] == 1}	{[b] == 1
ld [a] → x	ld [b] \rightarrow
st [b], y	st [a], x
{x == 0}	{y == 0}

Or can it?

Should HW or compiler prevent this?

Maybe here

Memory model final remarks

Need to balance between performance and ease of use

- Weak memory model allows for more HW optimizations
- Strong memory model allows for simpler SW
- May need flexibility to switch / combine depending on use case
- Different choices and vagueness exists in established architectures

Security architecture workgroup

Joe Xie chairing the workgroup
Helped organize the workshop
Workgroup meeting on Thursday

Why is it important to NVIDIA?

the total revenue lost to pirated games was approximately \$74.1 billion in 2014

http://gearnuke.com/video-game-piracy-rise-willcost-industry-much-makes/

Chinese company hacks Tesla car remotely

http://www.cnbc.com/2016/09/20/chinese-companyhacks-tesla-car-remotely.html

What is the problem?

Attack surface is growingSystems become more openConsequences are more severe

http://www.autosec.org/pubs/cars-usenixsec2011.pdf

Reduce attack surface of security sensitive software & provide isolation

Security Final Remarks

Other proposals under discussion

- Crypto ISA extensions to accelerate common algorithms (MicroSemi)
- Security metatags
- Excellent overview of all proposals in

Richard Newell, Sr Principal Product Architect, Microsemi Corp. Escrypt Security Class, Embedded World Conference, Germany March 15, 2017

Hardware attacks (e.g. differential power attacks) also a concern; not preventable by architecture

Final thougths

- NVIDIA will use RISC-V processors in many of its products
- We are contributing because RISC-V and our interests align
- Contribute to the areas that you feel passionate about!

