
Daniel Lustig

May 10, 2017

STATUS OF THE RISC-V
MEMORY CONSISTENCY MODEL

2

THE RISC-V MEMORY MODEL IS FINE!

• If you’re concerned about recent press, don’t be!

• We’re well aware of and on top of the issues

• We caught the spec bugs well before they’ll
actually affect any implementations in practice

• Great example of the benefits of open-source ISA

3

MEMORY CONSISTENCY MODEL

The set of rules specifying the values that can be
legally returned by memory loads

4

SEQUENTIAL CONSISTENCY

1. All threads are interleaved into a single “thread”

2. The interleaved thread respects each thread’s original
instruction ordering (“program order”)

5

SEQUENTIAL CONSISTENCY

1. All threads are interleaved into a single “thread”

2. The interleaved thread respects each thread’s original
instruction ordering (“program order”)

3. Loads return the value of the most recent store to the
same address, according to the interleaving

6

SEQUENTIAL CONSISTENCY

1. All threads are interleaved into a single “thread”

2. The interleaved thread respects each thread’s original
instruction ordering (“program order”)

3. Loads return the value of the most recent store to the
same address, according to the interleaving

For performance, most processors weaken rule #2

7

REORDERINGS ALLOWED BY RISC-V (AND OTHERS)

Ld St

Ld Y Y

St Y Y

Sequential
Consistency

Ld St

Ld Y Y

St — Y

TSO (x86)

Ld St

Ld — ???

St — —

RISC-V

Ld St

Ld — —

St — —

Power, ARM

First

Second

“Y” = ordering

enforced by default

“—” = ordering not

enforced by default

8

REORDERINGS ALLOWED BY RISC-V (AND OTHERS)

Ld St

Ld Y Y

St Y Y

Sequential
Consistency

Ld St

Ld Y Y

St — Y

TSO (x86)

Ld St

Ld — ???

St — —

RISC-V

Ld St

Ld — —

St — —

Power, ARM

First

Second

“Y” = ordering

enforced by default

“—” = ordering not

enforced by default

This is a common presentation of memory models,
but it’s a woefully incomplete picture!

9

Where should
RISC-V draw the

line?

Sequential

Consistency

THE MODEL AS AN UPPER BOUND

10

Where should
RISC-V draw the

line?

Total Store Order (x86)

Sequential

Consistency

THE MODEL AS AN UPPER BOUND

11

ARM

v8.2

Where should
RISC-V draw the

line?

Total Store Order (x86)

Sequential

Consistency

THE MODEL AS AN UPPER BOUND

12

IBM

Power

ARM

v8.2

Where should
RISC-V draw the

line?

Total Store Order (x86)

Sequential

Consistency

THE MODEL AS AN UPPER BOUND

13

IBM

Power

ARM

v8.2

Where should
RISC-V draw the

line?
GPUs/Accelerators

Total Store Order (x86)

Sequential

Consistency

THE MODEL AS AN UPPER BOUND

14

IBM

Power

ARM

v8.2

Where should
RISC-V draw the

line?
GPUs/Accelerators

Total Store Order (x86)

Sequential

Consistency

THE MODEL AS AN UPPER BOUND

15

IBM

Power

ARM

v8.2

Where should
RISC-V draw the

line?
GPUs/Accelerators

Total Store Order (x86)

Sequential

Consistency

THE MODEL AS AN UPPER BOUND
NVIDIA

16

IBM

Power

ARM

v8.2

Where should
RISC-V draw the

line?
GPUs/Accelerators

Total Store Order (x86)

Sequential

Consistency

THE MODEL AS AN UPPER BOUND
NVIDIA

17

IBM

Power

ARM

v8.2

Where should
RISC-V draw the

line?
GPUs/Accelerators

Total Store Order (x86)

Sequential

Consistency

THE MODEL AS AN UPPER BOUND
NVIDIA

18

WEAKENING EVEN FURTHER…

1. All threads are interleaved into a single “thread”

2. The interleaved thread respects each thread’s original
instruction ordering (“program order”)

3. Loads return the value of the most recent store to the
same address, according to the interleaving

For performance, most processors weaken rule #2

19

WEAKENING EVEN FURTHER…

1. All threads are interleaved into a single “thread”

2. The interleaved thread respects each thread’s original
instruction ordering (“program order”)

3. Loads return the value of the most recent store to the
same address, according to (some other rules)

For performance, most processors weaken rule #2

Most weaken rule #1 as well

20

STORE ATOMICITY

• Q: Can I think of an execution as an
interleaving of the instructions in
each thread (in some order)?

21

STORE ATOMICITY

• Q: Can I think of an execution as an
interleaving of the instructions in
each thread (in some order)?

• A: No! That would make it illegal to
forward values from a store buffer!

• Because with a store buffer, cores
can read their own writes “early”

CPU

Store
Buffer

Memory

22

STORE ATOMICITY

• Option 1: forbid store buffer
forwarding, keep a simpler memory
model, sacrifice performance

• Option 2: change the memory model
to allow store buffer forwarding, at
the cost of a more complex model

• Nearly all processors today choose #2

CPU

Store
Buffer

Memory

23

STORE ATOMICITY

• Q: Can I think of an execution as an
interleaving of the instructions in
each thread (in some order),
with an exception for store buffer
forwarding?

24

STORE ATOMICITY

• Q: Can I think of an execution as an
interleaving of the instructions in
each thread (in some order),
with an exception for store buffer
forwarding?

• A: Yes, on x86 and ARMv8.2

• simpler programming model

 No, on IBM Power and GPUs

• more scalable; allows more HW optimizations

25

STORE ATOMICITY

• Q: Can I think of an execution as an
interleaving of the instructions in
each thread (in some order),
with an exception for store buffer
forwarding?

• A: Yes, on x86 and ARMv8.2

• simpler programming model

 No, on IBM Power and GPUs

• more scalable; allows more HW optimizations

x86 and ARMv8.2 are

“(other-/weak-)

multi-copy atomic”

IBM Power and GPUs are

not multi-copy atomic

26

EXAMPLE: SIMULTANEOUS MULTITHREADING

Thread

0

Thread

1

In-Order CPU

Core w/ SMT

Memory

Store
Buffer

Thread

2

Thread

3

In-Order CPU

Core w/ SMT

Store
Buffer

• Consider the store buffer
forwarding a store value from
one thread to another

27

EXAMPLE: SIMULTANEOUS MULTITHREADING

Thread

0

Thread

1

In-Order CPU

Core w/ SMT

Memory

Store
Buffer

Thread

2

Thread

3

In-Order CPU

Core w/ SMT

Store
Buffer

• Consider the store buffer
forwarding a store value from
one thread to another

A

28

EXAMPLE: SIMULTANEOUS MULTITHREADING

Thread

0

Thread

1

In-Order CPU

Core w/ SMT

Memory

Store
Buffer

Thread

2

Thread

3

In-Order CPU

Core w/ SMT

Store
Buffer

• Consider the store buffer
forwarding a store value from
one thread to another

A

29

EXAMPLE: SIMULTANEOUS MULTITHREADING

Thread

0

Thread

1

In-Order CPU

Core w/ SMT

Memory

Store
Buffer

Thread

2

Thread

3

In-Order CPU

Core w/ SMT

Store
Buffer

• Consider the store buffer
forwarding a store value from
one thread to another

A B

30

EXAMPLE: SIMULTANEOUS MULTITHREADING

Thread

0

Thread

1

In-Order CPU

Core w/ SMT

Memory

Store
Buffer

Thread

2

Thread

3

In-Order CPU

Core w/ SMT

Store
Buffer

• Consider the store buffer
forwarding a store value from
one thread to another

A B

31

EXAMPLE: SIMULTANEOUS MULTITHREADING

Thread

0

Thread

1

In-Order CPU

Core w/ SMT

Memory

Store
Buffer

Thread

2

Thread

3

In-Order CPU

Core w/ SMT

Store
Buffer

Store A

happened before

Store B

• Consider the store buffer
forwarding a store value from
one thread to another

A B

32

EXAMPLE: SIMULTANEOUS MULTITHREADING

Thread

0

Thread

1

In-Order CPU

Core w/ SMT

Memory

Store
Buffer

Thread

2

Thread

3

In-Order CPU

Core w/ SMT

Store
Buffer

Store A

happened before

Store B

• Consider the store buffer
forwarding a store value from
one thread to another

Store B

happened before

Store A

A B

33

EXAMPLE: SIMULTANEOUS MULTITHREADING

Thread

0

Thread

1

In-Order CPU

Core w/ SMT

Memory

Store
Buffer

Thread

2

Thread

3

In-Order CPU

Core w/ SMT

Store
Buffer

Store A

happened before

Store B

• Consider the store buffer
forwarding a store value from
one thread to another

• Threads disagree about the
order of events!

Store B

happened before

Store A

A B

34

EXAMPLE: SIMULTANEOUS MULTITHREADING

Thread

0

Thread

1

In-Order CPU

Core w/ SMT

Memory

Store
Buffer

Thread

2

Thread

3

In-Order CPU

Core w/ SMT

Store
Buffer

Store A

happened before

Store B

• Option 1: require architects to
prevent cores from “reading
others’ writes early”

• Option 2: require programmers
to reason about the possibility
that different threads see
entirely different orderings

Store B

happened before

Store A

A B

35

PENDING/POSSIBLE CHANGES TO THE MODEL

Feature Status

Multi-copy atomicity Major debate!

Enforce same-address ordering

(including load-load pairs)
Required!

Forbid load-store reordering

(for accesses to different addresses)

Still sorting out the details!

Enforce ordering of

address/control/data-dependent

instructions

Which FENCE types?

(.pr, .pw, .sr, .sw? Other?)

36

HOW DOES THE MODEL AFFECT YOU?

• Programmers: it doesn’t, unless you’re writing assembly

• Compiler writers: this is really important! Let’s talk!

• Architects of simple cores/SoCs: this shouldn’t affect you,
but if you get more aggressive, check back in

• Architects of high-performance cores/SoCs: this will
affect how aggressive you can be, and will determine how
much complexity can/can’t get exposed beyond the ISA.
Let’s talk!

37

IT’S ALWAYS SAFE TO BE CONSERVATIVE

• If your architecture is simple and conservative
(in-order pipeline, simple memory design, etc.),
it will be compliant with any model we’ll use

• e.g., if the model chooses to allow non-atomicity, your
implementation can still safely be multi-copy atomic

• e.g., if you want to ignore the .pr, .pw, .sr, and .sw fence bits,
and just always do a full fence, that’s fine too

• The memory model committee will publish more
specific and concrete guidance

38

CONCLUSIONS

• RISC-V memory model details are still being worked out

• Expected timeline: months, not years

• These details largely only affect more aggressive future
implementations; today’s designs are unaffected

• Memory model committee will deliver spec + guidance

• If you’re considering an aggressive design, or just want to
get clarification or more detail, come talk to us!

dlustig@nvidia.com

mailto:dlustig@nvidia.com

