

Impedance Matching Expectations Between
RISC-V and the Open Hardware Community

bunnie
RISC-V Shanghai, 2017

Why “Impedance Matching?”
● Open silicon is a massive paradigm shift for open hardware

– It will come faster than the user base can understand the issues
– If the rise time is faster than the propagation time, energy gets

reflected if the load isn’t well-matched

Spinningspark at Wikipedia CC BY-SA 3.0

Review: Why Open Hardware Now?

Slower Iterations =
More Time for Refinement in a Given Node

Put in term of Process Nodes & Cost

(source: EETimes, “28nm – The Last Node of Moore's Law” by Zvi Or-Bach)

Case Study: Novena

New Reality:
30 Months from Concept to Delivery is OK

i.MX6
fabbed in
40nm

Conception Launch Delivery

Obsolescence
(Pi3 @ 1.2GHz
Quad-core ARM)

fabConception Launch Delivery Obsolescence

i.MX6 fabbed in 40nm Conception Launch Delivery Obsolescence
(Pi3)

Post-Moore

Previous
30 years

“Open Hardware”

What the Heck is Open Hardware, Anyways?

James Cridland CC-BY via Flickr

There’s an Official Definition...

Let’s Unpack that a Bit
● Open source hardware is hardware whose design is made publicly

available so that anyone can study, modify, distribute, make, and sell the
design or hardware based on that design. The hardware’s source, the
design from which it is made, is available in the preferred format for
making modifications to it. Ideally, open source hardware uses readily-
available components and materials, standard processes, open
infrastructure, unrestricted content, and open-source design tools to
maximize the ability of individuals to make and use hardware. Open
source hardware gives people the freedom to control their technology
while sharing knowledge and encouraging commerce through the open
exchange of designs.

Let’s Unpack that a Bit
● Open source hardware is hardware whose design is made publicly

available so that anyone can study, modify, distribute, make, and sell the
design or hardware based on that design. The hardware’s source, the
design from which it is made, is available in the preferred format for
making modifications to it. Ideally, open source hardware uses readily-
available components and materials, standard processes, open
infrastructure, unrestricted content, and open-source design tools to
maximize the ability of individuals to make and use hardware. Open
source hardware gives people the freedom to control their technology
while sharing knowledge and encouraging commerce through the open
exchange of designs.

Let’s Unpack that a Bit
● Open source hardware is hardware whose design is made publicly

available so that anyone can study, modify, distribute, make, and sell the
design or hardware based on that design. The hardware’s source, the
design from which it is made, is available in the preferred format for
making modifications to it. Ideally, open source hardware uses readily-
available components and materials, standard processes, open
infrastructure, unrestricted content, and open-source design tools to
maximize the ability of individuals to make and use hardware. Open
source hardware gives people the freedom to control their technology
while sharing knowledge and encouraging commerce through the open
exchange of designs.

Let’s Unpack that a Bit
● Open source hardware is hardware whose design is made publicly

available so that anyone can study, modify, distribute, make, and sell the
design or hardware based on that design. The hardware’s source, the
design from which it is made, is available in the preferred format for
making modifications to it. Ideally, open source hardware uses readily-
available components and materials, standard processes, open
infrastructure, unrestricted content, and open-source design tools to
maximize the ability of individuals to make and use hardware. Open
source hardware gives people the freedom to control their technology
while sharing knowledge and encouraging commerce through the open
exchange of designs.

What it Means in Practice...

Case Study: Open Source as a Marketing Term

What Appeals to Users

Herein lies the problem:
The trust root is still closed.

Despite all the efforts of
the open source community...

Conspiracy Fears Stoke Demand for
Transparency

Result: Standard for Transparency is Higher for
“Computers” than “IoT”

Dec 2012
Apr 2014

(dozens of emails later, including an
offer to build a custom version that has
a fused-out GPU but the VPU was still viable...)

Transparency is Easy, Right?

Browser

VMs

Servers

OS

Compiler

Toolchain

Ea
sy

 /
C

om
m

on
Ea

sy
 /

U
nc

om
m

on
Ba

rri
er

 to
 o

bt
ai

n
so

ur
ce

 fi
le

s

BIOS

Driver

Relative difficulty

...Not So in Silicon

Bus interfaces

Modules

PCBA

Chip designs

PDK / Foundries

Equipment, Raw Materials

Ea
sy

Im
po

ss
ib

le

Ba
rri

er
 to

 s
ou

rc
e

/ s
pe

cs

Few decision makers
in software have a
working knowledge
of these layers

Community Awareness of Trust Issues

BIOS

Firmwares (ME, SSD, GPU, boot microcode)

Pre-boot microcode (fuse/PLL mgmt)

Hidden/fused silicon blocks (debug / buggy blocks)

IP industry practices (hard blocks & encrypted netlists)

Mask trojans & glitches

community awareness

The Knowledge / Expectation Gap

BIOS

Firmwares (ME, SSD, GPU, boot microcode)

Pre-boot microcode (fuse/PLL mgmt)

Hidden/fused silicon blocks (debug / buggy blocks)

IP industry practices

Mask trojans & glitches

Little awareness
of imminent threats

Extremely difficult to
validate / verify, especially
in cutting-edge processes

Key Point
● Open Silicon vendors bear a burden to educate system-level

decision makers
1) What are the realistic, imminent threats?
2) How does open silicon addresses these issues?
3) What are the practical economic factors that limit transparency?

The Limits of Transparency in Silicon
● Post-Novena, investigated doing a very simple,

8- or 16-bit CPU using only open source tools
– Inspired by Visual 6502 project
– Use something like Magic/XCircuit/IRSIM +

Yosys/qrouter for design
– Fab in MOSIS 0.18um or 0.35um (SCMOS rules)
– “Totally inspectable” trust root

● I have a SEM, image layers and confirm construction

● Major problem: no open source FLASH IP
– Defeats the idea of having a “totally inspectable”

trust root when you can’t inspect the code store!

IP Industry & Lack of Transparency
● IP blocks & PDKs tend to be opaque or strictly NDA

– Fab industry is highly competitive
– PDK elements (including blocks such as SRAM, fuses, FLASH, DRAM) are valuable, difficult to

engineer, yet hard to protect
– High-speed, mixed-signal designs (PLL, CDR, PHY) are valuable, difficult to engineer, also hard

to protect
– Spec-compliance is tough (PCI, USB, ISA (ARM/x86/RISC-V)), yet once the RTL is spec

compliant it’s easy to copy and compile
● Development barriers are measured in millions to billions of dollars on cutting-edge

processes
– Not remotely comparable to barriers found in software
– IP licenses are extremely lucrative, often times costing more than the masks

The Security Nightmare
● Conspiracy: What if key IP providers are compelled to put back

doors in IP blocks?
– A back door in PCI-express, USB cores from Synopsys...
– A back door in TrustZone, or perhaps even the CPU implementation?

● Realistically: a set of benign escapes, but put together forming a
major hardware security breach
– Trust root in the ISA is great, but worthless if your IP blocks can stomp on

data
● How to turn this into an opportunity for RISC-V?

Compromise:
Good Fences Make Better Neighbors?

● Recap: a key benefit of openess is the ability to “understand
everything inside the hardware”
– But IP practices within the industry prevent that from being even

remotely true
● Proposal: Hardware introspection blocks

CC-BY: Lewis Collard via WikiMedia

Introspection: “Hardware ASSERT”
● “Hardware ASSERT statement” IP block

● “Fence in” opaque IP blocks to certain memory ranges
– Like a PMP, but not for user process – for 3rd party hardware IP

● Log or trigger on certain transactions
● Use TAP/BIST infrastructure to configure
● Primarily protects against

– Hidden/extra/undocumented registers in opaque IP blocks
– Monitoring IP blocks which can originate write/read transactions

Introspection: Storage Validation
● There are some “trivial” mask-edit attacks

– Masked ROM
– “Biasing” SRAM/register cells on reset

● Open RTL TAP/BIST readout of fuses, ROMs, SRAM, and
security-critical reset values

● Verification of content & function
● Done 100% outside of the closed IP blocks
● Ideally at full clock speed (to avoid reduced clock detection & spoof)

IC Inspection: It’s Hard, Why Even Bother?
● Temptation: tell users “trust me it’s too hard, don’t bother trying”

– Pattern: security people have been breaking stuff that’s “too hard” for decades
● Solution: make it their problem to solve

– What’s needed is an abstract map of design intent to compare against
– No need to reveal process-specific details, e.g. phase shift techniques, tiling, etc.

CC-BY Anthony Letmon via Wikipedia

Mask Inspection Compromise
● Full mask inspection not possible due to PDK confidentiality
● Compromise: share M2 or M3 and up, plus outlines of standard cells within key open-RTL regions?

– BEOL M3 and up has less secret sauce
● Share an abstract representation of metal layers (not GDS-II but a list of metal line centroids)
● Think “map” vs. “satellite image”

– Don’t reveal standard cell library layouts, or hard macros
● Difficult to introduce major logic changes at M2 and below
● Rule out compiler/RTL injection back door

– Detect extra data pathways for spoofing, copying data; extra instructions in ISA
– Detect extra RAM/ROM
– Cannot detect swapping one logic gate for another (e.g. AND→ NAND transformation)

● Use RTL structural + synthesis techniques + BIST introspection to harden against this?

– Random sampling SEM validation of e.g. introspection blocks
● Perhaps M3 or higher pattern comparison is sufficient and reasonably priced
● Lower metal can be done at a premium for high-value silicon
● Random sampling N needs to be higher if multiple copies of chip are in reticle
● Validation focuses primarily on trust root/introspection blocks

Introspection: Recap
● Assuming RISC-V implementations are willing to be 100% open

on self-generated RTL, including disclosing pre-boot config &
fusing...

● Three hardware introspection/inspection techniques to work
around IP/transparency issues in silicon industry:
1) ASSERT blocks – fence & log
2) Open TAP verification of black-box memories
3) BEOL / M2 or M3+ abstract “street map” availability

Mismatched Impedances:
Risk of Backfire

● Big fan of what SiFive is doing for open hardware
● Worried that expansive claims risk drawing criticism from the open hardware community

Impedance Mismatches
● “see what’s inside the chip and completely understand how the

hardware works”
– PLL and fuse blocks are black boxes

● Unfortunately, these are two very interesting black boxes from a hardware security
standpoint

● “SiFive has contributed the FE310 RTL code to the open source
community...Take a look: [SiFive at GitHub]”
– Github repo link doesn’t yet contain the FE310 code?

Better to Be Explicit and Clear

...and Add Fences?

Spell it Out for Non-Silicon Designers

BIOS

Firmwares (ME, boot microcode)

Pre-boot microcode (fuse/PLL mgmt)

Hidden/fused silicon blocks

IP industry practices

Mask trojans & glitches

ü

ü

ü

ü

ü?

¯_(ツ)_/¯

û

û

û

ü

û

RISC-VEveryone
else

û

RISC-V Market Targets in Open Source
Hardware

● Security / Trust Roots
– High-value segment
– High standard of scrutiny

● Push audit costs to users, e.g. BEOL metal inspection as a cost-adder, services for toolchain/probe setup
– Protectable advantage vs. rest of industry – closed vendors can’t compete
– Relatively low-performance, low IO requirement

● Open Source / Libre Movement Zealots
– Premium laptops and servers – RYF/FSF certified

● Basic certification is no blobs, and a promotion of user freedoms
– Scrutiny proportional to security claims

● Transparent disclosure of closed IP blocks + hardware introspection probably acceptable
● BEOL inspection probably not necessary

– High performance, IO requirements

Features for the Performance Segment
● Wide, fast ECC memory, and lots of it

– >=64GiB, >=2 channels, DDR4
● Privileged architecture w/hypervisor, security, core ISA extensions
● Always-on PMU complex (speed throttling + sleep/standby, clock tree management, thermal sensing)
● Interrupt + systimer complex
● Debug UART
● Transparent boot process & hardware introspection
● BEOL mask set for inspection
● One wide (x16) PCIe bus for graphics card

– IOMMU to allow large memory apertures
– Most window managers require 3D graphics for acceptable performance
– The Libre community has already drawn battle lines on acceptable practices for discrete graphics solutions – avoid integrated 3 rd party IP cores

● A couple narrow PCIe busses for peripheral expansion; # of busses traded off with peripheral integration level
– USB2.0 (5x for HID features – can stub out via hub)
– USB3.0 (2x for laptop, more for server)
– SATA-3 (2x for laptop, more for server)
– At least 2x PCIe x1 busses available for network connectivity (wifi + ethernet)

Any combo of PCIe
vs. integrated IP OK;
discrete peripherals
a plus in terms of
hackability. Could imagine
a bay of M2.NGFF slots
inside a laptop.

Main Point: Performance Segment
● Enthusiasts drive margins & buzz

– e.g. “overclockers” / “gamers” in the performance segment – $$$ for GHz and FPS
– Open/Libre enthusiasts have a similar elasticity in price points – $$$ for Transparency and Freedom

● Has overlap with the system-level decision makers, key developers

● Less 3rd party IP in SoC is a “feature” in the open hardware market
– Fewer black boxes in the silicon
– Market would bear higher system costs for discrete peripherals
– System-level modularity is a marketable feature

● Quick path to raise RISC-V awareness among early adopter crowd
– But to market as an “open” CPU, the openness aspect must be done right, or else you may get the

opposite effect

Impedance Matching: Recap
● “Open Hardware” definition means different things to different users

– Intelligent user base, but only partially educated on core issues
– Common values:

● Open hardware means hackable – any user can download, inspect, mod
● Open hardware means freedom – freedom of speech, freedom to make and use, non-discrimination
● Open hardware means transparent – “no black boxes”, but need to clarify up to which abstraction barrier

● Impedance matching will require finding a common ground and agreeing upon values and terminology
– Transparency is a potential key selling point, but:

● Never claim to eliminate all threats – you can’t
● Define a threat model, and how you mitigate that threat

● Of course, open hardware is a minority market for RISC-V
– Purely economic, not ideological arguments e.g. displacing ARM cores
– But: strong overlap between tool developers & open source enthusiasts

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

