
28th November 2017

Towards a production-ready RISC-V 
LLVM toolchain

Alex Bradbury, lowRISC CIC
asb@lowrisc.org @asbradbury @lowRISC



LLVM/Clang vs GCC

2



Implementation status

● Full time work started July 2017 thanks to funding from a RISC-V Foundation member.
● The GCC torture suite is used for initial testing

○ 1390/1390 tests compile and run for RV32I, RV32IM, RV32IMF, RV32IMFD at -O0, -O1, -O2, 
-O3, -Os

○ 1390/1390 tests compile and run for RV64I at -O0, -O1, -O2, -O3, -Os
● See https://github.com/lowRISC/riscv-llvm

3

https://github.com/lowRISC/riscv-llvm


Implementation status

● Moving towards larger scale tests and performance benchmarks.
○ Effort has been focused on correctness first, now moving to performance enhancements. 

Currently seeing +/- 20% executed insts vs GCC at O3 on computation-heavy benchmarks.
● Upstreaming of the full patchset is ongoing
● Andes Tech have started to submit an LLD (linker) port upstream and have been working on MC 

layer support for the C instruction set extensions
● See https://github.com/lowRISC/riscv-llvm

4

https://github.com/lowRISC/riscv-llvm


Adding RISC-V 
support to Clang 
and LLVM

● Took a “bottom-up” 
implementation approach

● LLVM middle-end 
optimisations are one of 
the key attractions to 
LLVM, and have few 
target-specific 
dependencies

5

Clang frontend

LLVM middle-end

LLVM codegen

LLVM MC layer



Challenge:
“Bootstrapping” the effort

6



Challenge:
Testing the range of ISA+ABI 
variants

7



Testing: current status

● Variants:
○ RV32E, RV32I, RV64I plus combinations of the standard MAFDC extensions, plus 

proprietary extensions
○ ABIs: -mabi={ilp32, ilp32e, ilp32f, ilp32d, lp64, lp64f, lp64d}
○ Code models and PIC

● Approach:
○ Suite of targeted unit tests
○ GCC torture suite
○ Randomised testing via abicop (https://github.com/lowRISC/abicop)

8



Testing: future aims

● Want any RISC-V implementer or research group to be able to easily reach a high degree of 
assurance about the correctness of their toolchain modifications

● Expanded correctness and performance testing
○ SPEC and other benchmarks
○ Building a huge corpus of software (e.g. Linux userspace, FreeBSD base system)
○ Track performance over time

● Expand use of fuzz testing and automated ways of tracking quality
○ Assembler/disassembler correctness
○ Quality of debug info
○ Automated test case generation+reduction
○ Further develop abicop

9



Challenge:
Growing the contributor base

10



Growing the contributor base

● Documentation. See https://github.com/lowRISC/riscv-llvm
○ Support architectural innovation by reducing the difficulty of making compiler changes.
○ Incremental, continuously maintained “ideal” patch set

● Avoid duplicated effort
○ Put and end to the short term out-of-tree forks and harness the combined engineering 

effort of the RISC-V community.
● Growing number of external contributions:

○ LLD and MC layer support for the C extension (Andes Tech)
○ Rust port https://github.com/dvc94ch/riscv-rust-toolchain (David Craven)

11

https://github.com/lowRISC/riscv-llvm


Challenge:
Specifications and standardisation

12



Specifications and standardisation

● Initiated and authored the RISC-V Toolchain Conventions effort 
https://github.com/riscv/riscv-toolchain-conventions

○ Document and standardise toolchain behaviour and command line interfaces (particularly 
between GCC and Clang), provide preferred paths for exposing custom extensions in 
vendor toolchains.

○ Aim to reduce fragmentation caused by differing behaviour in GCC, Clang, and 
vendor-supplied toolchain distributions.

● Numerous additions to the psABI docs https://github.com/riscv/riscv-elf-psabi-doc/

13



Challenge:
Upstreaming

14



Summary of approach

Put an end to the duplicated effort, allow the RISC-V community to collaborate around a common 
upstream toolchain without dependency on any one vendor.

● Act as a reference backend
● Extensively documented
● Clean set of incremental patches, maintained over the long term
● Upstreamed
● Contribute back, improving upstream LLVM where possible
● Grow the community, moving the RISC-V ecosystem towards collaborative development
● Invest a little extra effort at the start to get a better result over the longer term

15



About lowRISC

● lowRISC CIC is a UK not-for-profit (Community Interest Company, limited by guarantee) founded 
in 2014.

○ Serve the community of people interested in or who may benefit from open source 
hardware. Hobbyists, academics, startups, established companies.

○ Providing a high quality software stack is a vital complement to our work on open source 
hardware, novel security mechanisms, and post-design flexibility.

● Aim to bring the benefits of open source we enjoy in the software world to hardware.
● Fulfill a role similar to Linaro in the AArch64 ecosystem, but covering reference hardware 

designs as well as software

16



About lowRISC

● Hope to replicate the success of our RISC-V LLVM work across other areas of the RISC-V 
hardware/software stack.

● Spearheading targeted development efforts to enable long-term growth in the ecosystem. 
Sustainable and collaborative development of production-ready open source 
hardware/software.

Areas of interest include:
● Reference quality RISC-V core and SoC designs
● Hardware security mechanisms
● Large scale testing, benchmarking ,and verification
● Linux distribution support
● Simulation tooling and models to enable rapid architectural innovation
● Compiler toolchain and other software support 17



Implementation statistics

● ~20k lines added across ~185 files in LLVM projects. About 45:55 code:tests
● Work is split across 65 clean and incremental patches. 22 of these have been committed 

upstream so far.
● Need about ~12k lines (6k of which are tests) and ~35 patches for 100% GCC torture suite pass 

rate with RV32I
● Engineers from at least 7 different companies are now actively engaged or about to become 

actively engaged in upstream RISC-V LLVM development

18



What’s next

19



Longer term roadmap

20



The RISC-V LLVM ambition

21



Thanks

Thanks to the following people for contributing suggestions, code reviews, or patches to the RISC-V 
LLVM effort:

Sameer Abu Asal, Chandler Carruth, Shiva Chen, Chih-Mao Chen, Kito Cheng, David Chisnall, Simon 
Cook, David Craven, Hal Finkel, Eli Friedman, Ondrej Glasnak, Mandeep Singh Grang, David Kipping, 
James Y Knight, David Majnemer, Ed Maste, John McCall, Dylan McKay, Azharuddin Mohammed, Tim 
Northover, Krzysztof Parzyszek, Ana Pazos, Jordy Portman, Philip Reames, John Russo, Colin 
Schmidt, Pavel Šnobl, Ulrich Weigand, Eugene Zalenko, Florian Zeitz.

22



Overflow/backup slides

23



What’s next

● Performance comparisons vs RISC-V GCC
● Performance improvements
● Testing for realistic Linux applications (TLS, PIC, expand code model support)
● Merge in support for the compressed ISA (MC layer and codegen)
● Complete and promote the backend implementation documentation
● Full parity with the GNU RISC-V assembler (directives, pseudoinstructions)
● Finalise Clang ‘driver’

24



Longer term roadmap

● Further growth in external contributions
● Further performance and code size improvements
● Automated testing against a huge corpus (Buildroot/OpenEmbedded)
● Support for the proposed Vector extension
● Expanded performance tracking and benchmark set
● Extending the testing strategy: llvm-protobuf-mutator based assembler fuzzer, debug info quality 

tracking, MC layer fuzzing (equivalent of ARM’s MC Hammer)
● Work with language communities such as Rust, Swift, and Julia to enable RISC-V ports using the 

upstream RISC-V LLVM backend.
● Further completeness: sanitizers, compiler-rt, XRay
● Instruction scheduling models for at least some of the open source RISC-V implementations
● LLDB

25



RISC-V LLVM ambition

We have ambitious goals for the RISC-V LLVM backend, aiming for completeness and sophistication 
at least on par with the AArch64/X86 backends. We hope the RISC-V LLVM backend to be the:

● Best documented
● Cleanest implementation
● Easiest to contribute to
● Highest performing and most widely used RISC-V compiler

This will:
● Lower the barrier for groups who want/need to do compiler work as part of their architectural 

exploration
● Support uses of RISC-V and lowRISC in education and research
● Reduce maintenance cost for those who have to maintain changes out of tree (e.g. for long term 

customer support)
26


