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Simplification #1: Prove a Shallow Property

ISA Reference≅

The Kami way:
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of functional spec
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A framework to support implementing, 
specifying, formally verifying, and compiling 
hardware designs

based on the Bluespec high-level hardware design language

and the Coq proof assistant
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The Big Ideas

M

f(x) g(y)

Every method call appears to execute atomically.
Any step is summarized by a trace of calls.
Object refinement is inclusion of possible traces.

Recv f(1), 
Send h(2) Recv g(7), 

Send k(13)
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Some Example Kami Code (simple FIFO)

Definition deq {ty} : ActionT ty dType :=
  Read isEmpty <- ^empty;
  Assert !#isEmpty;
  Read eltT <- ^elt;
  Read enqPT <- ^enqP;
  Read deqPT <- ^deqP;
  Write ^full <- $$false;
  LET next_deqP <- (#deqPT + $1) :: Bit sz;
  Write ^empty <- (#enqPT == #next_deqP);
  Write ^deqP <- #next_deqP;
  Ret #eltT@[#deqPT].
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An Example Kami Proof (pipelined processor)
Lemma p4st_refines_p3st: p4st <<== p3st.
Proof.
  kmodular.
  - kdisj_edms_cms_ex O.
  - kdisj_ecms_dms_ex O.
  - apply fetchDecode_refines_fetchNDecode; auto.
  - krefl.
Qed.

Uses standard Coq ASCII syntax for mathematical proofs.
These proofs are checked automatically, just like type checking.
We inherit streamlined IDE support for Coq.
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Key Ingredient

Formal Semantics for RISC-V ISA(s)

Nikhil just explained the semantics style.
We are building a translator for the 
semantics into the language of Coq/Kami.
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An Open Library of Formally Verified Components

• Microcontroller-class RV32I (multicore; U)
• Desktop-class RV64IMA (multicore; U,S,M)
• Cache-coherent memory system

Reuse our proofs when composing our 
components with your own formally 
verified accelerators!
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The Trusted Computing Base

Where can defects go uncaught?

Coq proof checker (small & general-purpose)
RTL formal semantics
Application specification
ISA formal semantics
Hardware design (Bluespec, RTL, …)
Software implementation (C, …)
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Shameless plug!

Part of a larger project:
The Science of Deep Specification
A National Science Foundation
Expedition in Computing

https://deepspec.org/

Join our mailing list for updates on our 2018 
summer school: hands-on training with these tools!


