Strong Formal Verification for RISC-V
From Instruction-Set Manual to RTL

Adam Chlipala
MIT CSAIL
RISC-V Workshop
November 2017

Joint work with: Arvind, Thomas Bourgeat, Joonwon Choi, Ian
Clester, Samuel Duchovni, Jamey Hicks, Muralidaran Vijayaraghavan,
Andrew Wright

A Carfoon View of Digital Hardware Design

Metaprogramming

CAD fools

Quite proprietary magic

A C
artoo
n View
ot Di
Digital Hard
rdware
Desi
qv

Meta
programmin
4

v mal

@
ormal

C
AD Tools Q @
yma\:Ob’m \

K
‘ %

«

Q

Simplificalion #1: Prove a Shallow Property

Simplificalion #1: Prove a Shallow Property

Simplificalion #1: Prove a Shallow Property

pracTice:
prove some

InvarianTs

. — -~)
It Foo is in this register,
then Bar is in That one.

—
L "A
Never Baz here and Qux
There at same Time.,

S A~ 6

Simplificalion #1: Prove a Shallow Property

Common

pracTice:

prove some
or Boolean a, =" I and

eaguixa,\@vfc'e
_e" * Theck

. — -~)
It Foo is in this register,
then Bar is in That one.

— =

Never Baz here and Qux
There at same Time.,

S A~ 7

[1
x

Simplification #1: Prove a Shallow Properiy

The Kami way:
Behavioral refinement
of functional spec

Simplification #2: Analyze Isolated Components

Simplification #2: Analyze Isolated Components

The Kami way:
Modularly compose -
proofs of p‘ie,oeS"

-

10

Simplification #2: Analyze Isolated Components

|
S

The Kami way:
Modularly compose
proofs of p‘ie‘oeS"

‘4

4"
-

=

11

Simplification #2: Analyze Isolated Components

The Kami way:
Modularly compose
proofs of p‘ie‘oeS"

-

12

Simplificalion #3: Start Over For Each Design

13

Simplificalion #3: Start Over For Each Design

14

Simplificalion #3: Start Over For Each Design

Simplificalion #3: Start Over For Each Design

Simplificalion #3: Start Over For Each Design

The Kami way:

Prove once for all V ‘tV@eS o

parameters

12

A tramework fo support implementing,
specitying, tormally veritying, and compiling
hardware designs

based on the Bluespec high—level hardware design \amquaqe

bluespe

and the Cog proot assistant

18

The Big Ideas (from Bluespec)

Program modules are objects

19

The Big Ideas (from Bluespec)

Program modules are objects
with mufable private state,

20

The Big Ideas (from Bluespec)

Program modules are objects
with mufable private state,
accessed via methods.

21

The Big Ideas (from Bluespec)

Program modules are objects
with mufable private state,
accessed via methods.,

22

The Big Ideas

Every method call appears To execute atomically.

23

The Big Ideas

Recv t(1),
send h(2) Recv g(7),
Send k(13)
-

Every method call appears To execute atomically.
Any step is summarized by a frace ot calls,

24

-
S

The Big Ideas A reev £,
Send h(2) Reov (1),
Send k(13)
-

Refines

0,0

Every method call appears To execute atomically.
Any step is summarized by a frace ot calls,
Object refinement is inclusion ot possible fraces, -

The Big Ideas

Recv (1),
Send h(2)
Send k(13)

26

The Big Ideas

Recv q(1),
- Send k(13)
-

Composing obiects hides infernal method calls,

27

Composing obiects hides infernal method calls,

28

Some Example Kami Code (simple FIFO)

Definition deq {ty} : ActionT ty dType :=
Read 1isEmpty <- Aempty;
Assert !#1sEmpty,
Read eltT <- AMelt;
Read engPT <- ~enqP;
Read deqPT <- AdeqP;
Write Afull <- $$false;
LET next_degP <- (#degPT + $1) :: Bit sz;
Write Aempty <- (#engPT == #next_deqP);
Write AdeqP <- #next_deqP;
Ret #eltT@[#deqPT].

29

An Example Kami Proot (pipelined processor)

Lemma p4st_refines_p3st: pd4st <<== p3st.
Proof.
kmodular.
- kdisj_edms_cms_ex O.
- kdisj_ecms_dms_ex O.
- apply fetchDecode_refines_fetchNDecode; auto.
- krefl.
Qed.

Uses standard Cog ASCII suntax for mathematical proofs,
These proots are checked automatically, just like type checking.
We inherit streamlined IDE support for Cog.

30

We Are Building: Cog tactios to

prove refinements

m

31

We Are Building:

Compiler

Cog tactics to
prove refinements

Verity semantics
preservafion of
compiler

32

Some Usetul Retinement Tactics

Monolithic Spec

33

Some Usetul Retinement Tactics

Monolithic Spec

I @ Decompose

Decoupled Spec

34

Some Usetul Retinement Tactics

Monolithic Spec Getting Real

I @Decompose @Rep\ace Module

Decoupled Spec

Some Usetul Retinement Tactics

Monolithic Spec

I @ Decompose

Getling Real

Decoupled Spec

36

Some Usetul Retinement Tactics

Monolithic Spec

I @ Decompose

Getling Real

Decoupled Spec

@ Replace Module

Induction

37

Some Usetul Retinement Tactics

Monolithic Spec

Getling Real

I @ Decompose

Decoupled Spec

@ Replace Module

Induction
/Simulation

38

Some Usetul Retinement Tactics

Monolithic Spec

etting Real L
4

Replace « o o

I @ Decompose

Decoupled Spec

@ Replace Module

@ Induction @ Decompose
/Simulation

39

Key Ingredient

Formal Semantics for RISC—V ISA(s)

Nikhil just explained the semantics stule,

]

We are building 3
semantics into The

ranslator for the

anguage ot Cog/Kami,

An Open Library of Formally Veritied Components

-Microcontroller—=class ®V321 (multicore; L)
- Desktop—class RVe4IMA (mulficore; U,s,M)
- Cache—coherenT memory sustem

Reuse our proots when composing our
components with your own tormally
verified accelerators:

The Promise ot This Approach

42

The Promise ot This Approach

The Promise ot This Approach

The Promise ot This Approach

The Trusfed Compufing Base

Wheve can detects go uncaught?

46

The Trusfed Compufing Base

Wheve can detects go uncaught?

gCO% proot checker (small & general—purpose)

RTL tormal semantics
Application specitication

47

The Trusfed Compufing Base

Wheve can detects go uncaught?

gCo% proot checker (small & general—purpose)
gRTL tormal semantics

Application specitication
[) 15A formal semantics

[) Hardware design (Bluespec, ®TL, ..)
[) software implementation (C, ..)

48

Shameless plug:

Part ot a larger project:
The Science of Deep Specification

A National Science Foundafion
Expedifion in CompuTing

https://deepspec.org/

Join our mailing list tor updafes on our 201
summer school: hands—on fraining with these tools: *

