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Simplificalion #1: Prove a Shallow Property
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Simplification #1: Prove a Shallow Properiy

The Kami way:
Behavioral refinement
of functional spec
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Simplificalion #3: Start Over For Each Design
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Simplificalion #3: Start Over For Each Design

The Kami way:

Prove once for all V ‘tV@eS o
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A tramework fo support implementing,
specitying, tormally veritying, and compiling
hardware designs

based on the Bluespec high—level hardware design \amquaqe

bluespe

and the Cog proot assistant
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The Big Ideas (from Bluespec)

Program modules are objects
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The Big Ideas

Every method call appears To execute atomically.
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The Big Ideas

Recv t(1),
send h(2) Recv g(7),
Send k(13)
-

Every method call appears To execute atomically.
Any step is summarized by a frace ot calls,
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Every method call appears To execute atomically.
Any step is summarized by a frace ot calls,
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The Big Ideas

Recv q(1),
- Send k(13)
-

Composing obiects hides infernal method calls,
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Composing obiects hides infernal method calls,
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Some Example Kami Code (simple FIFO)

Definition deq {ty} : ActionT ty dType :=
Read 1isEmpty <- Aempty;
Assert !#1sEmpty,
Read eltT <- AMelt;
Read engPT <- ~enqP;
Read deqPT <- AdeqP;
Write Afull <- $$false;
LET next_degP <- (#degPT + $1) :: Bit sz;
Write Aempty <- (#engPT == #next_deqP);
Write AdeqP <- #next_deqP;
Ret #eltT@[#deqPT].
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An Example Kami Proot (pipelined processor)

Lemma p4st_refines_p3st: pd4st <<== p3st.
Proof.
kmodular.
- kdisj_edms_cms_ex O.
- kdisj_ecms_dms_ex O.
- apply fetchDecode_refines_fetchNDecode; auto.
- krefl.
Qed.

Uses standard Cog ASCII suntax for mathematical proofs,
These proots are checked automatically, just like type checking.
We inherit streamlined IDE support for Cog.
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We Are Building:

Compiler

Cog tactics to
prove refinements

Verity semantics
preservafion of
compiler
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Some Usetul Retinement Tactics

Monolithic Spec
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Key Ingredient

Formal Semantics for RISC—V ISA(s)

Nikhil just explained the semantics stule,

]

We are building 3
semantics into The

ranslator for the

anguage ot Cog/Kami,



An Open Library of Formally Veritied Components

-Microcontroller—=class ®V321 (multicore; L)
- Desktop—class RVe4IMA (mulficore; U,s,M)
- Cache—coherenT memory sustem

Reuse our proots when composing our
components with your own tormally
verified accelerators:



The Promise ot This Approach
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The Trusfed Compufing Base

Wheve can detects go uncaught?
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The Trusfed Compufing Base

Wheve can detects go uncaught?

gCo% proot checker (small & general—purpose)
gRTL tormal semantics

Application specitication
[) 15A formal semantics

[ ) Hardware design (Bluespec, ®TL, ..)
[) software implementation (C, ..)
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Shameless plug:

Part ot a larger project:
The Science of Deep Specification

A National Science Foundafion
Expedifion in CompuTing

https://deepspec.org/

Join our mailing list tor updafes on our 201
summer school: hands—on fraining with these tools: *



