
Strong Formal Verification for RISC-V
From Instruction-Set Manual to RTL

Adam Chlipala
MIT CSAIL
RISC-V Workshop
November 2017

Joint work with: Arvind, Thomas Bourgeat, Joonwon Choi, Ian
Clester, Samuel Duchovni, Jamey Hicks, Muralidaran Vijayaraghavan,
Andrew Wright

2

A Cartoon View of Digital Hardware Design

Generator

RTL (e.g., Verilog)

Metaprogramming

Physical Layout

Silicon

CAD tools

Quite proprietary magic

3

A Cartoon View of Digital Hardware Design

Generator

RTL (e.g., Verilog)

Metaprogramming

Physical Layout

Silicon

CAD tools

Quite proprietary magic

Formal

Formal

Formal

Formal

Formal

Formal

Formal

Formal

FormalFormal

Formal

Formal Formal

4

Simplification #1: Prove a Shallow Property

5

Simplification #1: Prove a Shallow Property

6

Simplification #1: Prove a Shallow Property

If Foo is in this register,
then Bar is in that one.

Never Baz here and Qux
there at same time.

Common
practice:
prove some

Invariants

7

Simplification #1: Prove a Shallow Property

If Foo is in this register,
then Bar is in that one.

Never Baz here and Qux
there at same time.

Common
practice:
prove some

Invariantsor Boolean
equivalence

check

8

Simplification #1: Prove a Shallow Property

ISA Reference≅

The Kami way:
Behavioral refinement
of functional spec

9

Simplification #2: Analyze Isolated Components

Proved

10

Simplification #2: Analyze Isolated Components

Proved
Proved

The Kami way:
Modularly compose
proofs of pieces

11

Simplification #2: Analyze Isolated Components

Proved

ProvedProved

The Kami way:
Modularly compose
proofs of pieces

12

Simplification #2: Analyze Isolated Components

Proved

Proved

ISA Reference

≅
Proved

The Kami way:
Modularly compose
proofs of pieces

13

Simplification #3: Start Over For Each Design

CPU

L1 Cache

Memory

14

Simplification #3: Start Over For Each Design

CPU

L1 Cache

Memory

Proved

CPU

L1 Cache

Memory

CPU

L1 Cache

15

Simplification #3: Start Over For Each Design

CPU

L1 Cache

Memory

Proved

CPU

L1 Cache

Memory

CPU

L1 Cache

Proved

CPU

L1 Cache

L2 Cache

CPU

L1 Cache

Memory

CPU

L1 Cache

CPU

L1 Cache

L2 Cache

16

Simplification #3: Start Over For Each Design

CPU

L1 Cache

Memory

Proved

CPU

L1 Cache

Memory

CPU

L1 Cache

Proved

CPU

L1 Cache

L2 Cache

CPU

L1 Cache

Memory

CPU

L1 Cache

CPU

L1 Cache

L2 Cache

Proved

17

Simplification #3: Start Over For Each Design

CPU

L1 Cache

Memory

Proved

CPU

L1 Cache

Memory

CPU

L1 Cache

Proved

CPU

L1 Cache

L2 Cache

CPU

L1 Cache

Memory

CPU

L1 Cache

CPU

L1 Cache

L2 Cache

Proved

The Kami way:
Prove once for all
parameters

ISA Reference
∀ trees. ≅

18

A framework to support implementing,
specifying, formally verifying, and compiling
hardware designs

based on the Bluespec high-level hardware design language

and the Coq proof assistant

19

The Big Ideas (from Bluespec)

M

Program modules are objects

20

The Big Ideas (from Bluespec)

M

Program modules are objects
with mutable private state,

21

The Big Ideas (from Bluespec)

M

f(x) g(y)

Program modules are objects
with mutable private state,
accessed via methods.

22

The Big Ideas (from Bluespec)

M

f(x) g(y)

N
h(u)

O
k(v)

Program modules are objects
with mutable private state,
accessed via methods.

23

The Big Ideas

M

f(x) g(y)

Every method call appears to execute atomically.

24

The Big Ideas

M

f(x) g(y)

Every method call appears to execute atomically.
Any step is summarized by a trace of calls.

Recv f(1),
Send h(2) Recv g(7),

Send k(13)

25

The Big Ideas

M

f(x) g(y)

Every method call appears to execute atomically.
Any step is summarized by a trace of calls.
Object refinement is inclusion of possible traces.

Recv f(1),
Send h(2) Recv g(7),

Send k(13)

M'
Refines

f g

26

The Big Ideas

M

f(x) g(y)

Recv g(7),
Send k(13)

Recv f(1),
Send h(2)

27

The Big Ideas

M

f(x) g(y)

Composing objects hides internal method calls.

Recv f(1)
Recv g(7),
Send k(13)

N
h(u)

28

The Big Ideas

M

f(x) g(y)

Composing objects hides internal method calls.

Recv f(1)
Recv g(7),
Send k(13)

N
h(u)

O
k(v)

Recv g(7)

29

Some Example Kami Code (simple FIFO)

Definition deq {ty} : ActionT ty dType :=
 Read isEmpty <- ^empty;
 Assert !#isEmpty;
 Read eltT <- ^elt;
 Read enqPT <- ^enqP;
 Read deqPT <- ^deqP;
 Write ^full <- $$false;
 LET next_deqP <- (#deqPT + $1) :: Bit sz;
 Write ^empty <- (#enqPT == #next_deqP);
 Write ^deqP <- #next_deqP;
 Ret #eltT@[#deqPT].

30

An Example Kami Proof (pipelined processor)
Lemma p4st_refines_p3st: p4st <<== p3st.
Proof.
 kmodular.
 - kdisj_edms_cms_ex O.
 - kdisj_ecms_dms_ex O.
 - apply fetchDecode_refines_fetchNDecode; auto.
 - krefl.
Qed.

Uses standard Coq ASCII syntax for mathematical proofs.
These proofs are checked automatically, just like type checking.
We inherit streamlined IDE support for Coq.

31

We Are Building:

Design Spec
Refines

Coq tactics to
prove refinements

32

We Are Building:

Design Spec
Refines

Coq tactics to
prove refinements

RTL

Compiler

Refi
nes

Verify semantics
preservation of

compiler

33

Some Useful Refinement Tactics
Monolithic Spec

Sequential
Consistency

34

Some Useful Refinement Tactics
Monolithic Spec

Sequential
Consistency

Decompose1

Decoupled Spec
Processor

Memory

35

Some Useful Refinement Tactics
Monolithic Spec

Sequential
Consistency

Decompose1

Decoupled Spec
Processor

Memory

Getting Real
Fancy Processor

Memory

Replace Module2

36

Some Useful Refinement Tactics
Monolithic Spec

Sequential
Consistency

Decompose1

Decoupled Spec
Processor

Memory

Getting Real
Fancy Processor

Memory

Replace Module2

Processor

. . . .

37

Some Useful Refinement Tactics
Monolithic Spec

Sequential
Consistency

Decompose1

Decoupled Spec
Processor

Memory

Getting Real
Fancy Processor

Memory

Replace Module2

Processor'

Induction
/Simulation

3

Processor

. . . .

38

Some Useful Refinement Tactics
Monolithic Spec

Sequential
Consistency

Decompose1

Decoupled Spec
Processor

Memory

Getting Real
Fancy Processor

Memory

Replace Module2

Processor'

Induction
/Simulation

3

Processor''

Ideal Queue

Decompose4

Processor

. . . .

39

Some Useful Refinement Tactics
Monolithic Spec

Sequential
Consistency

Decompose1

Decoupled Spec
Processor

Memory

Getting Real
Fancy Processor

Memory

Replace Module2

Processor'

Induction
/Simulation

3

Processor''

Ideal Queue

Decompose4

Processor

. . . .

Processor''

Ring Buffer
Replace5

=
. . . .

40

Key Ingredient

Formal Semantics for RISC-V ISA(s)

Nikhil just explained the semantics style.
We are building a translator for the
semantics into the language of Coq/Kami.

41

An Open Library of Formally Verified Components

• Microcontroller-class RV32I (multicore; U)
• Desktop-class RV64IMA (multicore; U,S,M)
• Cache-coherent memory system

Reuse our proofs when composing our
components with your own formally
verified accelerators!

42

The Promise of this Approach

ISA Formal Semantics

43

The Promise of this Approach

ISA Formal Semantics

Processor Proved

RTL Formal Semantics

44

The Promise of this Approach

ISA Formal Semantics

Processor Proved

RTL Formal Semantics

Application Machine Code

Application Specification

45

The Promise of this Approach

ISA Formal Semantics

Processor Proved

RTL Formal Semantics

Application Machine Code

Application Specification

Proved

46

The Trusted Computing Base

Where can defects go uncaught?

47

The Trusted Computing Base

Where can defects go uncaught?

Coq proof checker (small & general-purpose)
RTL formal semantics
Application specification

48

The Trusted Computing Base

Where can defects go uncaught?

Coq proof checker (small & general-purpose)
RTL formal semantics
Application specification
ISA formal semantics
Hardware design (Bluespec, RTL, …)
Software implementation (C, …)

49

Shameless plug!

Part of a larger project:
The Science of Deep Specification
A National Science Foundation
Expedition in Computing

https://deepspec.org/

Join our mailing list for updates on our 2018
summer school: hands-on training with these tools!

