
Copyright © 2018 Embecosm.
Freely available under a Creative Commons license.

GDB for RISC-V

Extending Support for Bare 
Metal Multi-core Debugging

Jeremy Bennett
Andrew Burgess



GDB in the RISC-V World

Debug Spec
Task Group

Technical
Committee

SW Tool
Chain



Upstream GDB
● Committed upstream 6 March 2018

━ basic bare metal support
● Combined effort of several engineers:

━ Andrew Burgess, Tim Newsome, Albert Ou, Darius Rad
━ official maintainers are Andrew Burgess & Palmer Dabbelt

● Nightly regression testing
━ against GDBsim and remote GDBserver (wrapping GDBsim)
━ range of architectures from RV32IM thru’ RM64IMFDC
━ >99% pass rate on all architectures



GDB Regression Tests (Sim Subset)
RV32IM RV32IMFC RV64IM RV64IMFDC

PASS 35,936 36,050 35,965 36,067

FAIL 309 190 303 194

XPASS 1 1 1 1

XFAIL 30 30 32 32

KPASS 3 3 3 3

KFAIL 53 53 51 51

UNRESOLVED 12 9 9 9

UNTESTED 231 231 229 229

UNSUPPORTED 326 326 326 326



GDB Regression Tests (GDBserver Subset)
RV32IM RV32IMFC RV64IM RV64IMFDC

PASS 35,746 35,856 35,793 35,896

FAIL 287 169 261 151

XPASS 1 1 1 1

XFAIL 30 30 32 32

KPASS 3 3 3 3

KFAIL 53 53 51 51

UNRESOLVED 10 10 10 10

UNTESTED 232 232 230 230

UNSUPPORTED 318 318 318 318



Upstream GDB Next Steps
● Adding XML target description support

━ initial work removed for now, aim for OpenOCD compatibility
● Memory map support
● Remote I/O support
● Adding non-DWARF stack unwinding
● Upstreaming a GDB simulator―possibly CGEN based

━ see Mary Bennett’s talk/poster later
● Linux application debugging

━ both native and via Linux gdbserver application



GDB Historic View of Multicore Debug

GDB

Process

thread 1

thread 2

thread n

Process

thread 1

thread 2

thread n

Inferior

fork()

GDB client

● Multiple inferiors OK
━ only one active at once
━ can handle fork()

● Address space per process
● Threads share an address space
● All-stop and non-stop execution



GDB Future View of Multicore Debug
● Multiple active inferiors

━ each a concurrent flow of control
● Each inferior associated with an address 

space
━ which memory can it see?

● Each inferior associated with a program 
space

━ which symbol table relates to its code?
━ breakpoints across multiple inferiors with 

the same program space
● All-stop and non-stop execution

━ inferiors not just threads

GDB

GDB client

Inferior

Inferior

Inferior



Current Status
● Upstream GDB supports multiple concurrent inferiors

━ works for native/Linux and single remote target
━ generic work by Pedro Alves and others to support on multiple 

remote targets
● GDB for RISC-V has this functionality

━ tested with 36-core RV64IMC system
━ working on a public version based on PULP

● More work is needed for complex address spaces
━ for example where some memory is shared with other inferiors



Copyright © 2018 Embecosm.
Freely available under a Creative Commons license.

Thank You
www.embecosm.com


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

