

Formal Verification of
RISC-V cores with

riscv-formal

Clifford Wolf
CTO, Symbiotic EDA

http://www.clifford.at/papers/2018/riscv-formal/

http://www.clifford.at/papers/2018/riscv-formal/

About assertion based
formal verification (formal ABV)

● Assertion based verification (ABV)
– Uses SystemVerilog assertions to check for invariant during simulation
– Usually used in combination with functional coverage to ensure all interesting cases are being simulated

● Formal ABV
– Replaces simulation with formal methods

● (This is effectively like simulating all possible traces.)

– Formal assumptions are used to limit the scope of the traces considered
– In case of a failure a (VCD) simulation trace is generated
– No functional coverage is necessary because all possible traces are being considered by a formal proof

Hello World

module hello (
 input clk, rst,
 output [3:0] cnt
);
 reg [3:0] cnt = 0;

 always @(posedge clk) begin
 if (rst)
 cnt <= 0;
 else
 cnt <= cnt + 1;
 end

`ifdef FORMAL
 always @* assume (cnt != 10);
 always @* assert (cnt != 15);
`endif
endmodule

hello.sv
[options]
mode prove
depth 10

[engines]
smtbmc z3

[script]
read_verilog -formal hello.sv
prep -top hello

[files]
hello.sv

hello.sby

Hello World
$ sby -f hello.sby
SBY 14:45:35 [hello] Removing direcory 'hello'.
SBY 14:45:35 [hello] Copy 'hello.sv' to 'hello/src/hello.sv'.
SBY 14:45:35 [hello] engine_0: smtbmc z3
…
…
…
SBY 14:45:35 [hello] engine_0.induction: finished (returncode=0)
SBY 14:45:35 [hello] engine_0: Status returned by engine for induction: PASS
SBY 14:45:36 [hello] engine_0.basecase: finished (returncode=0)
SBY 14:45:36 [hello] engine_0: Status returned by engine for basecase: PASS
SBY 14:45:36 [hello] summary: Elapsed clock time [H:MM:SS (secs)]: 0:00:00 (0)
SBY 14:45:36 [hello] summary: Elapsed process time [H:MM:SS (secs)]: 0:00:00 (0)
SBY 14:45:36 [hello] summary: engine_0 (smtbmc z3) returned PASS for induction
SBY 14:45:36 [hello] summary: engine_0 (smtbmc z3) returned PASS for basecase
SBY 14:45:36 [hello] summary: successful proof by k-induction.
SBY 14:45:36 [hello] DONE (PASS, rc=0)

Formal ABV for safety properties: Are the bad
states reachable from the initial states ?

reachable states
(implicit)

assertions
(explicit)

unreachable non-bad
states. many of those
usually implies a difficult
proof.

Cut-Points, Blackboxes,
and other Abstractions

● Abstractions are used in formal verification to replace a complex problem with a
more general simpler problem.

● The simplest abstraction is cutpoints:
– Disconnect the driver for a net, making the net unconstrained
– Obviously this simplifies the problem: The original driver may now be optimized away.
– The new problem is more general: If the proof succeeds that means that the properties

also hold for the original problem.

● Blackboxing is like creating cut points, but for all outputs of a hierarchical entity.
● Examples for other abstractions:

– Replace actual counter with counter > $past(counter) assumption
– Multiplier that is unconstrained except 0*x = x*0 = 0 and 1*x = x*1 = x

Availability of various EDA tools for
students, hobbyists, enthusiasts

● FPGA Synthesis
– Free to use:

● Xilinx Vivado WebPack, etc.

– Free and Open Source:
● Yosys + Project IceStorm
● VTR (Odin II + VPR)

● HDL Simulation
– Free to use:

● Xilinx XSIM, etc.

– Free and Open Source:
● Icarus Verilog, Verilator, etc.

● Formal Verification
– Free to use:

● ???

– Free and Open Source:
● ???

.. and people in the industry
are complaining they can't find
any verification experts to hire!

About Symbiotic EDA
● We build Open Source EDA tools

– Commercial focus on formal verification
– But we are best known for our FPGA tool-chains

● We offer commercial versions of our tool suite
– With SystemVerilog and VHDL support
– We also offer trainings and commercial support

● And we create formal verification IP
– Such as riscv-formal

HDL features in Yosys (Open Source)
and Symbiotic EDA Suite (Commercial)

● Yosys

– Verilog 2005

– Memories / Arrays

– Immediate assert(),
assume(), and cover()

– checkers, rand [const] regs

– Special attributes:
● anyconst, anyseq, allconst, allseq, gclk

● Symbiotic EDA Suite

– Everything in Yosys

+ SystemVerilog 2012

+ VHDL 2008

+ Concurrent assert(),
 assume(), and cover()

+ SVA Properties

“Formal first” vs. traditional use
of formal methods Cost of (fixing)

a bug

Time

Development Verification / Testing Production

Traditional use-
case

for formal

Number of found new bugs
Formal

first

Most formal tools are priced
and advertised for the
traditional use case.

Formal First → designing better
digital circuits faster and cheaper

● Formal First is a set of design methodologies focusing on using formal methods during development, as early as possible.
– Target user base is design engineers, not verification engineers

● Not necessarily for creating complete correctness proofs. Instead run simple BMC for “low hanging fruits” safety properties,
such as
– standard bus interfaces like AXI/APB/etc.
– simple data flow analysis to catch reset issues and/or pipeline interlocking problems
– use cover() statements to replace hard-to-write one-off test benches for trying things with the design under test

● Can be as simple as: always @(posedge i_clk) cover(o_wb_ack);

● Formal methods can help to find a vast range of bugs sooner and produces shorter (and thus easier to analyze) counter
example traces.

● Let’s not limit our thinking to “formal is for XYZ”! Formal is a set of fairly generic technologies that have applications
everywhere in the design process!
– But we cannot unleash the full potential formal has to offer unless we make sure that every digital design and/or verification engineer has

access to formal tools. (Like each of those people has access to HDL simulators.)

Formal First
● Here are a few example use cases for formal tools during the development phase of a new circuit:

– Verification of embedded “sanity check” assertions
● E.g. “write and read pointers never point to the same element after reset”

– Verification of standardized interface using standardized “off-the-shelf” formal properties
● E.g. standardized bus interfaces such as AXI.

– Using cover statements to create test benches quickly.
● E.g. cover “done signal goes high (some time after reset)”

– Using cover statements during debugging to make sense of trace data from FPGA based test runs.
● E.g. cover “done signal goes high while NAK is active”
● Or assert “done signal never goes high while NAK is active”

– Note that this are the same techniques that are employed in the traditional use case for formal.
– This is similar to how simulators are used by design and verification engineers alike.
– Nobody would claim that simulators are “only for verification (of few very special designs)”.

About riscv-formal
● riscv-formal is a formal verification IP for RISC-V processors

– Ongoing development, currently support RV32/64IMC
– Current focus of development is improved support for priv spec and CSRs

● With riscv-formal we focus on bounded model check (BMC)
– Usual depth is 10-50 cycles (depending on mirco-arch)
– Effective depth can be increased by using abstract init states

● The core under test just needs to support the riscv-formal interface (RVFI)
– RVFI is a simple trace port that can be added easily to an existing core
– RVFI is output-only, thus formal equivalence checks can extend a proof for the RVFI-enabled core to the version of the core without RVFI
– riscv-formal is an end-to-end black-box approach. Any RISC-V processor that implements RVFI can be checked with riscv-formal

● riscv-formal is not simply one large formal check. Instead, it’s a few 100 individual proofs, each relatively small. This yields
much better performance than one large monolithic proof ever could.

Simplified anatomy of a riscv-formal check
rvfi_testbench

rvfi_wrapper

RISC-V Core

Memory and I/O
abstractions

rvfi_check

RVFI

Different wrapper for each core

riscv-formal is
essentially a library of a

few 100 such checks

RISC-V Formal Interface (RVFI)
● Outputs a packet for each retired instruction

– Usually that packet is generated in the write-back stage

● Supports an arbitrary number of channels
– Necessary for supporting superscalar cores

● Instructions can be output in an arbitrary order
– Each packet is tagged with an instruction index (rvfi_order)

– That instruction index must correspond to the program order

● riscv-formal works with any core that implements RVFI

RVFI Basic Signals
● Basic RVFI signals

output [NRET - 1 : 0] rvfi_valid // 1 in a cycle with a packet

output [NRET * 64 - 1 : 0] rvfi_order // insn index in program order

output [NRET * ILEN - 1 : 0] rvfi_insn // instruction word

output [NRET - 1 : 0] rvfi_trap // 1 if the instruction traps

output [NRET - 1 : 0] rvfi_halt // 1 if the instrucion may halt

output [NRET - 1 : 0] rvfi_intr // 1 if first insn in intr handler

output [NRET * 2 - 1 : 0] rvfi_mode // 0=U, 1=S, 2=Reserved 3=M

● NRET = Number of RVFI channels

● ILEN = Maximum instruction length supported by the core (min 32)

RVFI Basic Signals
● Basic RVFI signals for program counter

output [NRET * XLEN - 1 : 0] rvfi_pc_rdata // old program counter

output [NRET * XLEN - 1 : 0] rvfi_pc_wdata // new program counter

● XLEN = 32 or 64

● pc_rdata = address of this instruction

● pc_wdata = address of next instruction

RVFI Basic Signals
● Basic RVFI signals for register file

output [NRET * 5 - 1 : 0] rvfi_rs1_addr // address of rs1/rs2

output [NRET * 5 - 1 : 0] rvfi_rs2_addr

output [NRET * XLEN - 1 : 0] rvfi_rs1_rdata // data read from rs1/rs2

output [NRET * XLEN - 1 : 0] rvfi_rs2_rdata

output [NRET * 5 - 1 : 0] rvfi_rd_addr // address of rd

output [NRET * XLEN - 1 : 0] rvfi_rd_wdata // data written to rd

● Unused fields simply use addr=0 and data=0 (consistent with x0/zero)

RVFI Basic Signals
● Basic RVFI signals for memory access

output [NRET * XLEN - 1 : 0] rvfi_mem_addr // address of memory access

output [NRET * XLEN/8 - 1 : 0] rvfi_mem_rmask // byte-enable for read

output [NRET * XLEN/8 - 1 : 0] rvfi_mem_wmask // byte-enable for write

output [NRET * XLEN - 1 : 0] rvfi_mem_rdata // data read from memory

output [NRET * XLEN - 1 : 0] rvfi_mem_wdata // data written to memory

● When the Verilog define RISCV_FORMAL_ALIGNED_MEM is set, rvfi_mem_addr must point to an
XLEN-aligned address. Otherwise rvfi_mem_addr points directly to the accessed memory location.

● For instructions that don’t access memory, use rmask=0 and wmask=0.

RVFI Signals for CSRs
● For each (non-shadow) CSR we add 4 additional RVFI signals:

output [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_rmask // bitmask: bits observed
output [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_wmask // bitmask: bits written
output [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_rdata // CSR data bits observed
output [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_wdata // CSR data bits written

● Which CSRs are supported by the core under test is signaled using Verilog defines. For each
supported CSR we define

RISCV_FORMAL_CSR_<CSRNAME>

● See riscv-formal docs for details.
● Note: CSR support in riscv-formal is currently under development.

Alternative Arithmetic Operations
● Some arithmetic operations are hard to verify using black-box methods. (multiply, divide)

– For those operations we define “alternative operations” that can be used during verification.

– The Verilog define RISCV_FORMAL_ALTOPS is used to signal the use of those alternative operations.

● This requires providing “drop-in” replacements for the relevant Verilog modules (see for example rocket
MulDiv drop-in module in <riscv-formal>/cores/rocket/).
– The drop-in replacement must be an abstraction of the actual module with respect to control signals.
– With respect to the data path the drop-in replacement must implement the “alternative operation”.

● Note that with alternative operations riscv-formal will only verify the data paths to and from the arithmetic
unit. An extra proof is required to check the data path of the arithmetic unit in isolation.

● See RVFI documentation for details.

RVFI and F/D/Q ISA extensions
output [NRET * 5 - 1 : 0] rvfi_frs1_addr // register addresses
output [NRET * 5 - 1 : 0] rvfi_frs2_addr
output [NRET * 5 - 1 : 0] rvfi_frs3_addr
output [NRET * 5 - 1 : 0] rvfi_frd_addr

output [NRET - 1 : 0] rvfi_frs1_rvalid // there’s no floating point
output [NRET - 1 : 0] rvfi_frs2_rvalid // zero register, so we need
output [NRET - 1 : 0] rvfi_frs3_rvalid // dedicated valid signals
output [NRET - 1 : 0] rvfi_frd_wvalid

output [NRET * FLEN - 1 : 0] rvfi_frs1_rdata // data read and/or written
output [NRET * FLEN - 1 : 0] rvfi_frs2_rdata
output [NRET * FLEN - 1 : 0] rvfi_frs3_rdata
output [NRET * FLEN - 1 : 0] rvfi_frd_wdata

output [NRET * XLEN - 1 : 0] rvfi_csr_fcsr_rmask // fcsr
output [NRET * XLEN - 1 : 0] rvfi_csr_fcsr_wmask
output [NRET * XLEN - 1 : 0] rvfi_csr_fcsr_rdata
output [NRET * XLEN - 1 : 0] rvfi_csr_fcsr_wdata Note: F/D/Q is work in progress

External AMOs
● Atomic Memory operations with rd=x0 may not actually return the old value to the core.

– The atomic operation could be performed entirely in the external memory fabric without the core actually having
knowledge of neither old nor new value.

– Thus it would not be possible for the core to populate rvfi_mem_[rw]data correctly.

● Cores that have this issue may set RISCV_FORMAL_EXTAMO to signal that they implement the following
additional RVFI signal:

output [NRET - 1 : 0] rvfi_mem_extamo

● When rvfi_mem_extamo is set, rvfi_mem_wdata carries the rs2 value used with the atomic
instruction instead of the new value in the memory location. rvfi_mem_rmask is all-zeros in this case.

● Note: This feature is work in progress.

Skipped Instructions
● Consider the instruction sequence on the right

– If t3 is nonzero, the core might decide to
simply skip the add instruction.

– But the RVFI spec requires the add instruction to be
retired with it’s correct output value t0.

● A core that can skip instructions like this can signal via RISCV_FORMAL_SKIP that it implement an addition
RVFI signal:

output [NRET - 1 : 0] rvfi_skip

● The register value written by an instruction with rvfi_skip active is not checked by riscv-formal.

● No non-skipped instruction may ever observe the value written by a skipped instruction.
● Note: This feature is work in progress.

 add t0,t1,t2
 beqz t3,label
 sub t0,t1,t3
label:

Fused Instructions
● A core may retire multiple fused instructions in a single RVFI packet.

– This is necessary if instruction fusing will hide intermediate results that become unavailable to
the RVFI generator because of the instruction fusing.

● As far as riscv-formal is concerned those fused instructions are just longer
instructions.
– This means a core with support for instruction fusion needs to set a larger ILEN parameter.
– For shorter (un-fused) instructions the upper (unused) bits of rvfi_insn must be set to zeros.

● Note: No core currently supported by riscv-formal uses this feature.

Verification Strategy
● riscv-formal is not one large check, it’s many small ones

– Each check only uses some of the RVFI signals
– Each check allows for blackboxing different parts of the core under test
– Each check allows for different abstractions being used in the core under test
– Thus those small checks are much faster than one large check could ever be

● There are two categories of riscv-formal checks:
– Instructions checks
– Consistency checks

Instruction Checks
● There is one instruction check for each RISC-V instruction and RVFI channel
● They assume that the core retires

– The type of instruction the check is for
– On the RVFI channel the check is for
– In a given cycle N after reset (= bounds of check)

● They check that
– The instruction in rvfi_insn is consistent with

– the state transition described in the other RVFI signals in that RVFI packet.

● I.e. an instruction check only checks one RVFI packet on one RVFI channel in one cycle
● Thus most of the things that hold persistent inter-instruction state, such as the register file, can be black-

boxed or replaced with abstractions.

Consistency Checks
● In addition to instruction checks there is a handful of consistency checks in riscv-formal.

– They check if the sequence of packets on the RVFI interface is internally consistent.

● For example, there is are checks to make sure that
– a register read observes the value previously written (or read)
– there are no instruction indices missing (rvfi_order)

– rvfi_pc_wdata matches rvfi_pc_rdata of the next instruction, unless the next instruction has rvfi_intr set.

● i.e. consistency checks look at larger sequences of RVFI packets spread out over time, but each one of
them only looks at a few of the RVFI signals

● Usually large parts of the core can be abstracted away of blackboxed for a given consistency check. The
most obvious example for that would be the entire ALU.

Ex. rvfi_pc_{fwd,bwd}_check.sv
● Checks that

– rvfi_pc_wdata in instruction K equals

– rvfi_pc_rdata in instruction K+1,

– unless instruction K+1 has rvfi_intr set.

(rvfi_order = K, K+1)

● Remember: Instructions can be retired out of order on RVFI.
– rvfi_pc_fwd_check: assumes instruction K+1 (for any K) is retired in cycle N (= bounds of check),

and asserts that a previously retired instruction K has a matching rvfi_pc_wdata

– rvfi_pc_bwd_check: assumes instruction K (for any K) is retired in cycle N,
and asserts that a previously retired instruction K+1 has a matching rvfi_pc_rdata

● We run a separate instance of this check for each RVFI channel.
– The assumption and assertion for instruction K+1 (fwd) or K (bwd) applies to that channel.
– The “search” backwards for the matching instruction is always performed on all channels.

● Find the code on GitHub: https://github.com/SymbioticEDA/riscv-formal

● <riscv-formal>/checks/
– Verilog code for riscv-formal checks, and also some other Verilog files

● <riscv-formal>/insns/
– RISC-V ISA semantics used by instruction checks

● <riscv-formal>/monitor/
– RVFI monitor core (for checking RVFI stream in simulation or FPGA-based testing)

● <riscv-formal>/cores/<core-name>/
– Cores currently supported (not all are part of the public repo)

● <riscv-formal>/tests/
– Additional tests to verify riscv-formal itself, for example formal verification against

spike (official ISA sim, written in C++) and against the MIT RISC-V formal spec (Haskell)

https://github.com/SymbioticEDA/riscv-formal

Supported cores (excerpt)
● PicoRV32

– A small RV32IMC implementation (M/C optional)
– RVFI support enabled by `define RISCV_FORMAL
– RV32IC variant of the core is fully verified

● RISC-V Rocket
– Full-featured RISC-V implementation
– Version of Rocket with RVFI is not upstream yet

● VexRiscv
– A small RV32I implementation written in SpinalHDL

● See riscv-formal/cores/ for core support scripts

Running riscv-formal
$ git clone https://github.com/SymbioticEDA/riscv-formal

$ cd riscv-fromal/cores/picorv32

$ cat README

$ wget -O picorv32.v https://raw.githubusercontent.com/..../picorv32.v

$ python3 ../../checks/genchecks.py
Reading checks.cfg.

Creating checks directory.

Generated 76 checks.

$ make -C checks -j$(nproc)

More details:
 → demo at the end of this presentation

What bugs can riscv-formal find?
● Hard to give a complete list, but for example

– Incorrect single-threaded instruction semantics
– Any bugs in bypassing/forwarding or pipeline interlock
– Reordering gone wrong with respect to registers
– Bugs where execution freezes (may require fairness constraints)
– Some bugs related to memory interface and ld/st/fetch

● Bugs we can’t detect (yet :)
– Things not covered by current RVFI (like CSRs and F/D/Q)
– Anything related to concurrency between hearts

Determining ideal BMC depths
● Finding the right BMC depth setting is hard:

– Too deep and the BMC will not complete within reasonable time.
– Too shallow and important parts of the state space will not be reached.

● Solution #1: Use a separate formal check with SystemVerilog cover() statements to figure out
what depth is necessary to include traces with certain properties. See cover.sv in riscv-
formal/cores/*/ for some examples.

● Solution #2: Add bugs to your design (one at a time) and see which BMC depth is sufficient to
find them.

● In some cases it might even be necessary to combine deep BMC checks with restrictions with a
shallow BMC check without restrictions in order to achieve the desired state space coverage.

Results
● So far riscv-formal has found bugs in

– PicoRV32
– Rocket
– VexRiscv
– RI5CY
– (other cores)
– ISA Spec
– Spike

● Most of these bugs fall in one of the following categories
– Clearing the LSB of the addition result in JALR (← single most common bug !!)
– Decoding of reserved compressed instructions and hints
– Bugs that need “weird timings” (e.g. bugs in bypassing)
– Reset bugs

Future Work
● Support for more ISA extensions

– Next on list: F/D/Q/A
– Support for CSRs, U-mode, S-mode

● Support for more cores
– But slowly, because more cores mean less flexibility
– Talk to me if you want to see your core supported

● Better integration with non-free tools (maybe :)

</Formal Verification of
RISC-V cores with

riscv-formal>

Clifford Wolf
CTO, Symbiotic EDA

http://www.clifford.at/papers/2018/riscv-formal/

http://www.clifford.at/papers/2018/riscv-formal/

OSDA – Open Source Design Automation
Friday Workshop at DATE 2019

● Topics include:
– Open-Source Tools, IPs, Languages, and Methodologies
– Future directions for the open-source FPGA movement
– Discussions on licenses, funding, and commercialization

http://osda.gitlab.io

http://osda.gitlab.io/

short demo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

