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About assertion based
formal verification (formal ABV)

● Assertion based verification (ABV)
– Uses SystemVerilog assertions to check for invariant during simulation
– Usually used in combination with functional coverage to ensure all interesting cases are being simulated

● Formal ABV
– Replaces simulation with formal methods

● (This is effectively like simulating all possible traces.)

– Formal assumptions are used to limit the scope of the traces considered
– In case of a failure a (VCD) simulation trace is generated
– No functional coverage is necessary because all possible traces are being considered by a formal proof



  

Hello World

module hello (
  input clk, rst,
  output [3:0] cnt
);
  reg [3:0] cnt = 0;

  always @(posedge clk) begin
    if (rst)
      cnt <= 0;
    else
      cnt <= cnt + 1;
  end

`ifdef FORMAL
  always @* assume (cnt != 10);
  always @* assert (cnt != 15);
`endif
endmodule

hello.sv
[options]
mode prove
depth 10

[engines]
smtbmc z3

[script]
read_verilog -formal hello.sv
prep -top hello

[files]
hello.sv

hello.sby



  

Hello World
$ sby -f hello.sby 
SBY 14:45:35 [hello] Removing direcory 'hello'.
SBY 14:45:35 [hello] Copy 'hello.sv' to 'hello/src/hello.sv'.
SBY 14:45:35 [hello] engine_0: smtbmc z3
…
…
…
SBY 14:45:35 [hello] engine_0.induction: finished (returncode=0)
SBY 14:45:35 [hello] engine_0: Status returned by engine for induction: PASS
SBY 14:45:36 [hello] engine_0.basecase: finished (returncode=0)
SBY 14:45:36 [hello] engine_0: Status returned by engine for basecase: PASS
SBY 14:45:36 [hello] summary: Elapsed clock time [H:MM:SS (secs)]: 0:00:00 (0)
SBY 14:45:36 [hello] summary: Elapsed process time [H:MM:SS (secs)]: 0:00:00 (0)
SBY 14:45:36 [hello] summary: engine_0 (smtbmc z3) returned PASS for induction
SBY 14:45:36 [hello] summary: engine_0 (smtbmc z3) returned PASS for basecase
SBY 14:45:36 [hello] summary: successful proof by k-induction.
SBY 14:45:36 [hello] DONE (PASS, rc=0)



  

Formal ABV for safety properties: Are the bad 
states      reachable from the initial states    ?

reachable states
(implicit)

assertions
(explicit)

unreachable non-bad 
states. many of those 
usually implies a difficult 
proof.



  

Cut-Points, Blackboxes,
and other Abstractions

● Abstractions are used in formal verification to replace a complex problem with a 
more general simpler problem.

● The simplest abstraction is cutpoints:
– Disconnect the driver for a net, making the net unconstrained
– Obviously this simplifies the problem: The original driver may now be optimized away.
– The new problem is more general: If the proof succeeds that means that the properties 

also hold for the original problem.

● Blackboxing is like creating cut points, but for all outputs of a hierarchical entity.
● Examples for other abstractions:

– Replace actual counter with counter > $past(counter) assumption
– Multiplier that is unconstrained except 0*x = x*0 = 0 and 1*x = x*1 = x



  

Availability of various EDA tools for 
students, hobbyists, enthusiasts

● FPGA Synthesis
– Free to use:

● Xilinx Vivado WebPack, etc.

– Free and Open Source:
● Yosys + Project IceStorm
● VTR (Odin II + VPR)

● HDL Simulation
– Free to use:

● Xilinx XSIM, etc.

– Free and Open Source:
● Icarus Verilog, Verilator, etc.

● Formal Verification
– Free to use:

● ???

– Free and Open Source:
● ???

.. and people in the industry
are complaining they can't find
any verification experts to hire!



  

About Symbiotic EDA
● We build Open Source EDA tools

– Commercial focus on formal verification
– But we are best known for our FPGA tool-chains

● We offer commercial versions of our tool suite
– With SystemVerilog and VHDL support
– We also offer trainings and commercial support

● And we create formal verification IP
– Such as riscv-formal



  

HDL features in Yosys (Open Source)
and Symbiotic EDA Suite (Commercial)

● Yosys

– Verilog 2005

– Memories / Arrays

– Immediate assert(),
assume(), and cover()

– checkers, rand [const] regs

– Special attributes:
● anyconst, anyseq, allconst, allseq, gclk

● Symbiotic EDA Suite

– Everything in Yosys

+ SystemVerilog 2012

+ VHDL 2008

+ Concurrent assert(),
   assume(), and cover()

+ SVA Properties



  

“Formal first” vs. traditional use
of formal methods Cost of (fixing)

a bug

Time

Development Verification / Testing Production

Traditional use-
case

for formal

Number of found new bugs
Formal

first

Most formal tools are priced 
and advertised for the 
traditional use case.



  

Formal First → designing better
digital circuits faster and cheaper

● Formal First is a set of design methodologies focusing on using formal methods during development, as early as possible.
– Target user base is design engineers, not verification engineers

● Not necessarily for creating complete correctness proofs. Instead run simple BMC for “low hanging fruits” safety properties, 
such as
– standard bus interfaces like AXI/APB/etc.
– simple data flow analysis to catch reset issues and/or pipeline interlocking problems
– use cover() statements to replace hard-to-write one-off test benches for trying things with the design under test

● Can be as simple as: always @(posedge i_clk) cover(o_wb_ack);

● Formal methods can help to find a vast range of bugs sooner and produces shorter (and thus easier to analyze) counter 
example traces.

● Let’s not limit our thinking to “formal is for XYZ”! Formal is a set of fairly generic technologies that have applications 
everywhere in the design process!
– But we cannot unleash the full potential formal has to offer unless we make sure that every digital design and/or verification engineer has 

access to formal tools. (Like each of those people has access to HDL simulators.)



  

Formal First
● Here are a few example use cases for formal tools during the development phase of a new circuit:

– Verification of embedded “sanity check” assertions
● E.g. “write and read pointers never point to the same element after reset”

– Verification of standardized interface using standardized “off-the-shelf” formal properties
● E.g. standardized bus interfaces such as AXI.

– Using cover statements to create test benches quickly.
● E.g. cover “done signal goes high (some time after reset)”

– Using cover statements during debugging to make sense of trace data from FPGA based test runs.
● E.g. cover “done signal goes high while NAK is active”
● Or assert “done signal never goes high while NAK is active”

– Note that this are the same techniques that are employed in the traditional use case for formal.
– This is similar to how simulators are used by design and verification engineers alike.
– Nobody would claim that simulators are “only for verification (of few very special designs)”.



  

About riscv-formal
● riscv-formal is a formal verification IP for RISC-V processors

– Ongoing development, currently support RV32/64IMC
– Current focus of development is improved support for priv spec and CSRs

● With riscv-formal we focus on bounded model check (BMC)
– Usual depth is 10-50 cycles (depending on mirco-arch)
– Effective depth can be increased by using abstract init states

● The core under test just needs to support the riscv-formal interface (RVFI)
– RVFI is a simple trace port that can be added easily to an existing core
– RVFI is output-only, thus formal equivalence checks can extend a proof for the RVFI-enabled core to the version of the core without RVFI
– riscv-formal is an end-to-end  black-box approach. Any RISC-V processor that implements RVFI can be checked with riscv-formal

● riscv-formal is not simply one large formal check. Instead, it’s a few 100 individual proofs, each relatively small. This yields 
much better performance than one large monolithic proof ever could.



  

Simplified anatomy of a riscv-formal check
rvfi_testbench

rvfi_wrapper

RISC-V Core

Memory and I/O 
abstractions

rvfi_check

RVFI

Different wrapper for each core

riscv-formal is 
essentially a library of a 

few 100 such checks



  

RISC-V Formal Interface (RVFI)
● Outputs a packet for each retired instruction

– Usually that packet is generated in the write-back stage

● Supports an arbitrary number of channels
– Necessary for supporting superscalar cores

● Instructions can be output in an arbitrary order
– Each packet is tagged with an instruction index (rvfi_order)

– That instruction index must correspond to the program order

● riscv-formal works with any core that implements RVFI



  

RVFI Basic Signals
● Basic RVFI signals

output [NRET        - 1 : 0] rvfi_valid   // 1 in a cycle with a packet

output [NRET *   64 - 1 : 0] rvfi_order   // insn index in program order

output [NRET * ILEN - 1 : 0] rvfi_insn    // instruction word

output [NRET        - 1 : 0] rvfi_trap    // 1 if the instruction traps

output [NRET        - 1 : 0] rvfi_halt    // 1 if the instrucion may halt

output [NRET        - 1 : 0] rvfi_intr    // 1 if first insn in intr handler

output [NRET * 2    - 1 : 0] rvfi_mode    // 0=U, 1=S, 2=Reserved 3=M

● NRET = Number of RVFI channels

● ILEN = Maximum instruction length supported by the core (min 32)



  

RVFI Basic Signals
● Basic RVFI signals for program counter

output [NRET * XLEN - 1 : 0] rvfi_pc_rdata  // old program counter

output [NRET * XLEN - 1 : 0] rvfi_pc_wdata  // new program counter

● XLEN = 32 or 64

● pc_rdata = address of this instruction

● pc_wdata = address of next instruction



  

RVFI Basic Signals
● Basic RVFI signals for register file

output [NRET *    5 - 1 : 0] rvfi_rs1_addr    // address of rs1/rs2

output [NRET *    5 - 1 : 0] rvfi_rs2_addr

output [NRET * XLEN - 1 : 0] rvfi_rs1_rdata   // data read from rs1/rs2

output [NRET * XLEN - 1 : 0] rvfi_rs2_rdata

output [NRET *    5 - 1 : 0] rvfi_rd_addr     // address of rd

output [NRET * XLEN - 1 : 0] rvfi_rd_wdata    // data written to rd

● Unused fields simply use addr=0 and data=0 (consistent with x0/zero)



  

RVFI Basic Signals
● Basic RVFI signals for memory access

output [NRET * XLEN   - 1 : 0] rvfi_mem_addr     // address of memory access

output [NRET * XLEN/8 - 1 : 0] rvfi_mem_rmask    // byte-enable for read

output [NRET * XLEN/8 - 1 : 0] rvfi_mem_wmask    // byte-enable for write

output [NRET * XLEN   - 1 : 0] rvfi_mem_rdata    // data read from memory

output [NRET * XLEN   - 1 : 0] rvfi_mem_wdata    // data written to memory

● When the Verilog define RISCV_FORMAL_ALIGNED_MEM is set, rvfi_mem_addr must point to an 
XLEN-aligned address. Otherwise rvfi_mem_addr points directly to the accessed memory location.

● For instructions that don’t access memory, use rmask=0 and wmask=0.



  

RVFI Signals for CSRs
● For each (non-shadow) CSR we add 4 additional RVFI signals:

output [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_rmask  // bitmask: bits observed
output [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_wmask  // bitmask: bits written
output [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_rdata  // CSR data bits observed
output [NRET * XLEN - 1 : 0] rvfi_csr_<csrname>_wdata  // CSR data bits written

● Which CSRs are supported by the core under test is signaled using Verilog defines. For each 
supported CSR we define

RISCV_FORMAL_CSR_<CSRNAME>

● See riscv-formal docs for details.
● Note: CSR support in riscv-formal is currently under development.



  

Alternative Arithmetic Operations
● Some arithmetic operations are hard to verify using black-box methods. (multiply, divide)

– For those operations we define “alternative operations” that can be used during verification.

– The Verilog define RISCV_FORMAL_ALTOPS is used to signal the use of those alternative operations.

● This requires providing “drop-in” replacements for the relevant Verilog modules (see for example rocket 
MulDiv drop-in module in <riscv-formal>/cores/rocket/).
– The drop-in replacement must be an abstraction of the actual module with respect to control signals.
– With respect to the data path the drop-in replacement must implement the “alternative operation”.

● Note that with alternative operations riscv-formal will only verify the data paths to and from the arithmetic 
unit. An extra proof is required to check the data path of the arithmetic unit in isolation.

● See RVFI documentation for details.



  

RVFI and F/D/Q ISA extensions
output [NRET *    5 - 1 : 0] rvfi_frs1_addr        // register addresses
output [NRET *    5 - 1 : 0] rvfi_frs2_addr
output [NRET *    5 - 1 : 0] rvfi_frs3_addr
output [NRET *    5 - 1 : 0] rvfi_frd_addr

output [NRET        - 1 : 0] rvfi_frs1_rvalid      // there’s no floating point
output [NRET        - 1 : 0] rvfi_frs2_rvalid      // zero register, so we need
output [NRET        - 1 : 0] rvfi_frs3_rvalid      // dedicated valid signals
output [NRET        - 1 : 0] rvfi_frd_wvalid

output [NRET * FLEN - 1 : 0] rvfi_frs1_rdata       // data read and/or written
output [NRET * FLEN - 1 : 0] rvfi_frs2_rdata
output [NRET * FLEN - 1 : 0] rvfi_frs3_rdata
output [NRET * FLEN - 1 : 0] rvfi_frd_wdata

output [NRET * XLEN - 1 : 0] rvfi_csr_fcsr_rmask   // fcsr
output [NRET * XLEN - 1 : 0] rvfi_csr_fcsr_wmask
output [NRET * XLEN - 1 : 0] rvfi_csr_fcsr_rdata
output [NRET * XLEN - 1 : 0] rvfi_csr_fcsr_wdata Note: F/D/Q is work in progress



  

External AMOs
● Atomic Memory operations with rd=x0 may not actually return the old value to the core.

– The atomic operation could be performed entirely in the external memory fabric without the core actually having 
knowledge of neither old nor new value.

– Thus it would not be possible for the core to populate rvfi_mem_[rw]data correctly.

● Cores that have this issue may set RISCV_FORMAL_EXTAMO to signal that they implement the following  
additional RVFI signal:

output [NRET          - 1 : 0] rvfi_mem_extamo

● When rvfi_mem_extamo is set, rvfi_mem_wdata carries the rs2 value used with the atomic 
instruction instead of the new value in the memory location. rvfi_mem_rmask is all-zeros in this case.

● Note: This feature is work in progress.



  

Skipped Instructions
● Consider the instruction sequence on the right

– If t3 is nonzero, the core might decide to
simply skip the add instruction.

– But the RVFI spec requires the add instruction to be
retired with it’s correct output value t0.

● A core that can skip instructions like this can signal via RISCV_FORMAL_SKIP that it implement an addition 
RVFI signal:

output [NRET        - 1 : 0] rvfi_skip

● The register value written by an instruction with rvfi_skip active is not checked by riscv-formal.

● No non-skipped instruction may ever observe the value written by a skipped instruction.
● Note: This feature is work in progress.

    ....
    add t0,t1,t2
    beqz t3,label
    sub t0,t1,t3
label:
    ....



  

Fused Instructions
● A core may retire multiple fused instructions in a single RVFI packet.

– This is necessary if instruction fusing will hide intermediate results that become unavailable to 
the RVFI generator because of the instruction fusing.

● As far as riscv-formal is concerned those fused instructions are just longer 
instructions.
– This means a core with support for instruction fusion needs to set a larger ILEN parameter.
– For shorter (un-fused) instructions the upper (unused) bits of rvfi_insn must be set to zeros.

● Note: No core currently supported by riscv-formal uses this feature.



  

Verification Strategy
● riscv-formal is not one large check, it’s many small ones

– Each check only uses some of the RVFI signals
– Each check allows for blackboxing different parts of the core under test
– Each check allows for different abstractions being used in the core under test
– Thus those small checks are much faster than one large check could ever be

● There are two categories of riscv-formal checks:
– Instructions checks
– Consistency checks



  

Instruction Checks
● There is one instruction check for each RISC-V instruction and RVFI channel
● They assume that the core retires

– The type of instruction the check is for
– On the RVFI channel the check is for
– In a given cycle N after reset (= bounds of check)

● They check that
– The instruction in rvfi_insn is consistent with

– the state transition described in the other RVFI signals in that RVFI packet.

● I.e. an instruction check only checks one RVFI packet on one RVFI channel in one cycle
● Thus most of the things that hold persistent inter-instruction state, such as the register file, can be black-

boxed or replaced with abstractions.



  

Consistency Checks
● In addition to instruction checks there is a handful of consistency checks in riscv-formal.

– They check if the sequence of packets on the RVFI interface is internally consistent.

● For example, there is are checks to make sure that
– a register read observes the value previously written (or read)
– there are no instruction indices missing (rvfi_order)

– rvfi_pc_wdata matches rvfi_pc_rdata of the next instruction, unless the next instruction has rvfi_intr set.

● i.e. consistency checks look at larger sequences of RVFI packets spread out over time, but each one of 
them only looks at a few of the RVFI signals

● Usually large parts of the core can be abstracted away of blackboxed for a given consistency check. The 
most obvious example for that would be the entire ALU.



  

Ex. rvfi_pc_{fwd,bwd}_check.sv
● Checks that

– rvfi_pc_wdata in instruction K equals

– rvfi_pc_rdata in instruction K+1,

– unless instruction K+1 has rvfi_intr set.

(rvfi_order = K, K+1)

● Remember: Instructions can be retired out of order on RVFI.
– rvfi_pc_fwd_check: assumes instruction K+1 (for any K) is retired in cycle N (= bounds of check),

and asserts that a previously retired instruction K has a matching rvfi_pc_wdata

– rvfi_pc_bwd_check: assumes instruction K (for any K) is retired in cycle N,
and asserts that a previously retired instruction K+1 has a matching rvfi_pc_rdata

● We run a separate instance of this check for each RVFI channel.
– The assumption and assertion for instruction K+1 (fwd) or K (bwd) applies to that channel.
– The “search” backwards for the matching instruction is always performed on all channels.



  

● Find the code on GitHub: https://github.com/SymbioticEDA/riscv-formal

● <riscv-formal>/checks/
– Verilog code for riscv-formal checks, and also some other Verilog files

● <riscv-formal>/insns/
– RISC-V ISA semantics used by instruction checks

● <riscv-formal>/monitor/
– RVFI monitor core (for checking RVFI stream in simulation or FPGA-based testing)

● <riscv-formal>/cores/<core-name>/
– Cores currently supported (not all are part of the public repo)

● <riscv-formal>/tests/
– Additional tests to verify riscv-formal itself, for example formal verification against

spike (official ISA sim, written in C++) and against the MIT RISC-V formal spec (Haskell)

https://github.com/SymbioticEDA/riscv-formal


  

Supported cores (excerpt)
● PicoRV32

– A small RV32IMC implementation (M/C optional)
– RVFI support enabled by `define RISCV_FORMAL
– RV32IC variant of the core is fully verified

● RISC-V Rocket
– Full-featured RISC-V implementation
– Version of Rocket with RVFI is not upstream yet

● VexRiscv
– A small RV32I implementation written in SpinalHDL

● See riscv-formal/cores/ for core support scripts



  

Running riscv-formal
$ git clone https://github.com/SymbioticEDA/riscv-formal

$ cd riscv-fromal/cores/picorv32

$ cat README

$ wget -O picorv32.v https://raw.githubusercontent.com/..../picorv32.v

$ python3 ../../checks/genchecks.py
Reading checks.cfg.

Creating checks directory.

Generated 76 checks.

$ make -C checks -j$(nproc)

More details:
  → demo at the end of this presentation



  

What bugs can riscv-formal find?
● Hard to give a complete list, but for example

– Incorrect single-threaded instruction semantics
– Any bugs in bypassing/forwarding or pipeline interlock
– Reordering gone wrong with respect to registers
– Bugs where execution freezes (may require fairness constraints)
– Some bugs related to memory interface and ld/st/fetch

● Bugs we can’t detect (yet :)
– Things not covered by current RVFI (like CSRs and F/D/Q)
– Anything related to concurrency between hearts



  

Determining ideal BMC depths
● Finding the right BMC depth setting is hard:

– Too deep and the BMC will not complete within reasonable time.
– Too shallow and important parts of the state space will not be reached.

● Solution #1: Use a separate formal check with SystemVerilog cover() statements to figure out 
what depth is necessary to include traces with certain properties. See cover.sv in riscv-
formal/cores/*/ for some examples.

● Solution #2: Add bugs to your design (one at a time) and see which BMC depth is sufficient to 
find them.

● In some cases it might even be necessary to combine deep BMC checks with restrictions with a 
shallow BMC check without restrictions in order to achieve the desired state space coverage.



  

Results
● So far riscv-formal has found bugs in

– PicoRV32
– Rocket
– VexRiscv
– RI5CY
– (other cores)
– ISA Spec
– Spike

● Most of these bugs fall in one of the following categories
– Clearing the LSB of the addition result in JALR        (← single most common bug !!)
– Decoding of reserved compressed instructions and hints
– Bugs that need “weird timings” (e.g. bugs in bypassing)
– Reset bugs



  

Future Work
● Support for more ISA extensions

– Next on list: F/D/Q/A
– Support for CSRs, U-mode, S-mode

● Support for more cores
– But slowly, because more cores mean less flexibility
– Talk to me if you want to see your core supported

● Better integration with non-free tools (maybe :)
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OSDA – Open Source Design Automation
Friday Workshop at DATE 2019

● Topics include:
– Open-Source Tools, IPs, Languages, and Methodologies
– Future directions for the open-source FPGA movement
– Discussions on licenses, funding, and commercialization

http://osda.gitlab.io

http://osda.gitlab.io/


  

short demo
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