
Running the Zephyr RTOS
and TensorFlow Lite on
RISC-V

RISC-V Summit, Santa Clara, Dec 03, 2018
Michael Gielda, Antmicro, mgielda@antmicro.com
Piotr Zierhoffer, Antmicro, pzierhoffer@antmicro.com
Pete Warden, Google, petewarden@google.com

ABOUT ZEPHYR

“The Zephyr™ Project is a Linux
Foundation hosted Collaboration
Project, (...) aiming to build a
best-in-breed small, scalable, real-time
operating system (RTOS) optimized for
resource constrained devices, across
multiple architectures.”

WHAT IS THE ZEPHYR PROJECT?

“The Zephyr™ Project is a Linux
Foundation hosted Collaboration
Project, (...) aiming to build a
best-in-breed small, scalable, real-time
operating system (RTOS) optimized for
resource constrained devices, across
multiple architectures.”

WHAT IS THE ZEPHYR PROJECT?

WHY BOTHER WITH TINY CHIPS?

I’m convinced that machine learning can run on tiny,
low-power chips, and that this combination will solve
a massive number of problems we have no solutions for
right now.

Pete Warden, Google's TensorFlow Mobile Technical Lead
https://petewarden.com/2018/06/11/why-the-future-of-machine-learning-is-tiny/

https://petewarden.com/2018/06/11/why-the-future-of-machine-learning-is-tiny/

6

Zephyr Project
• Open source real time operating system

• Vibrant Community participation

• Built with safety and security in mind
• Cross-architecture with growing

developer tool support

• Vendor Neutral governance

• Permissively licensed - Apache 2.0

• Complete, fully integrated, highly
configurable, modular for flexibility, better
than roll-your-own

• Product development ready with LTS
• Certification ready with Auditable

Open Source, RTOS, Connected, Embedded
Fits where Linux is too big

Zephyr OS

Kernel

OS Services

Application Services

HAL

3rd Party Libraries

OTHER REASONS WE NEED ZEPHYR

• targeted at IoT and making it truly
vendor-neutral & open source -
BlueTooth, OpenThread...

• portability, API standardization
• good scalability perspective

between different systems (e.g.
heterogeneous multi-core)

• grown-up OS features
• Linux-like look and feel
• modern design, software-driven
• testing, testing, testing

SO, WHO’S IN?

AS WELL AS

CROSS-ARCHITECTURE

Zephyr OS

• The kernel and HAL
• OS Services such as IPC, Logging, file

systems, crypto

Zephyr Project

• SDK, tools and development
environment

• Additional middleware and features
• Device Management and Bootloader

Zephyr Community

• 3rd Party modules and libraries
• Support for Zephyr in 3rd party

projects, for example: Jerryscript,
Micropython, Iotivity

Zephyr Ecosystem
Zephyr “Community”

Zephyr Project

Zephyr OS

Kernel / HAL

OS Services

Application Services

Kernel / HAL

• Scheduler
• Kernel objects and services
• low-level architecture and board support
• power management hooks and low level

interfaces to hardware

OS Services and Low level APIs

• Platform specific drivers
• Generic implementation of I/O APIs
• File systems, Logging, Debugging and IPC
• Cryptography Services
• Networking and Connectivity
• Device Management

Application Services

• High Level APIs
• Access to standardized data models
• High Level networking protocols

2018

Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec

Zephyr Releases

Zephyr Roadmap 2018

Zephyr 1.11 Zephyr 1.12 Zephyr 1.13 Future LTS
• OpenThread support
• Native POSIX Port
• POSIX API Layer (PSE52)
• FOTA Updates (LWM2M,

BLE)
• SMP Support
• Lightweight Flash Storage
• Support the kernel

(scheduler + objects) as a
separate module

• AMP Support
• 802.1Q - Virtual LANs
• Persistant Storage for BT
• TAP net device support
• SPI slave support
• CanBUS support
• Source Code modularisation:

Support external modules,
boards, SoCs

• Command line meta-tool
“west”

• Wi-Fi driver

• QM level qualification
• MISRA-C 2012: Kernel
• LLVM Support
• Precision Time Protocol

(PTP) Support
• Improved Logging

Support
• Eco-System: Tracing,

Profiling, debugging
support through 3rd party
tools

• Multiple Git Repos
• Soft real-time tasklets
• Advanced Power Mgmt.

• Safety and Security
Pre-Certification

• Time Sensitive Networking
(TSN) Support

• TEE for ARMv8-M
• LoRa Support
• SocketCAN
• Paging Support
• Dynamic Module Loading
• Enhanced Sensor support

(support HW FIFOs)
• MIPS

♦
1.11

♦
1.12 ♦

1.13
♦

1.14

NOTE: Features aligned to releases are subject to change per guidance from the TSC

RISC-V IN ZEPHYR

• pretty good documentation on porting and
required components

• 4 platforms (including QEMU) supported today,
we need more (reach out to us, we can help)!

• our LiteX/VexRiscv port exists but needs to be
upstreamed

RISC-V ZEPHYR PORT

https://docs.zephyrproject.org/latest/porting/arch.html
https://docs.zephyrproject.org/latest/porting/arch.html
https://github.com/antmicro/zephyr/tree/litex-vexriscv

• first, you need to read this
• there is some entry work to understand the

structure (as with any standardised system), but
• it’s really not so much code (example)

ADDING YOUR BOARD

https://docs.zephyrproject.org/latest/porting/board_porting.html
https://github.com/zephyrproject-rtos/zephyr/tree/master/boards/riscv32/hifive1

WORKING WITH ZEPHYR

• comes with an SDK (really a bunch of open
source tools, don’t fret) - 0.9.5 currently

• toolchains come bundled, adding a new
platform requires providing a toolchain (but you
can use your own)

• source a simple script and work in the console
• don’t forget to also do: pip3 install -r
scripts/requirements.txt

SDK

• based on CMake && (make || ninja)
• uses Kconfig format with custom extensions
• Python menuconfig implementation
• to be most probably replaced by

Swiss-Army-knife CLI meta-tool, West

BUILDSYSTEM / CONFIGURATION

#include "contiki.h"

#include <stdio.h> /* For printf() */
/*--------------------------------------*/
PROCESS(hello_world_process, "Hello world");
AUTOSTART_PROCESSES(&hello_world_process);
/*--------------------------------------*/
PROCESS_THREAD(hello_world_process, ev, data)
{
 PROCESS_BEGIN();

 printf("Hello, world\n");

 PROCESS_END();
}
/*---------------------------------------*/

HELLO WORLD EXAMPLE

#include <zephyr.h>
#include <misc/printk.h>

void main(void)
{
 printk("Hello World! %s\n", CONFIG_ARCH);
}

TOOLS & TESTING

• currently using SanityCheck, a runner for
various simulators (QEMU, Renode, ARC
simulator) and real boards

• introducing TCF, new open source framework
from Intel for testing on real hardware

• strong focus on testing
• testing working group, meets every Monday

TESTING

• Open source, permissively licensed framework
targeting similar, especially multi-node systems

• Recommended Zephyr tool
• Integration with SanityCheck is being merged,

with Mi-V as example platform
• Our Zephyr ports were developed on Renode
• Also working to enhance multi-node testing in

Zephyr with Renode

TESTING ZEPHYR IN RENODE

 Renode - a new approach to complex embedded systems development

CONTINUOUS INTEGRATION METHODOLOGY

TensorFlow Lite on RISC-V

TensorFlow Lite

https://www.tensorflow.org/lite/

- Officially supported on Android, iOS, and Raspberry Pi
- Less than 100 kilobytes of binary footprint!
- Few dependencies (for example flatbuffers instead of protobufs)
- Good support for model compression techniques like quantization

https://www.tensorflow.org/lite/

TensorFlow Lite for Microcontrollers

- Still very experimental!
- Aimed at running machine learning models on sensor data
- 20KB binary footprint (on Cortex M3), with no memory allocation, floating point,

or standard C/C++ library calls

Challenge

- Want to run on RISC-V!
- Already internally running on GreenWaves GAP8
- No external targets available

First Big Question

Which RISC-V?

- Lots of different toolchains and devices
- No ‘apt-get install riscv-gcc’ (yet)!
- Started with the GNU MCU Eclipse toolchain, since it was the easiest to find
- It was hard to figure out how to target something that we could run on a real

device (or in Renode)
- A colleague (Marcia Louis) suggested using the SiFive Freedom E toolchain

with prebuilt binaries and targeting the SiFive FE310, which has a Renode
definition

https://gnu-mcu-eclipse.github.io/toolchain/riscv/
https://github.com/sifive/freedom-e-sdk

Getting It Working

https://github.com/antmicro/tensorflow/tree/riscv-mcu

Pre-requisites: Download pre-built RISC-V gnu tools from SiFive

curl -O -L "https://static.dev.sifive.com/dev-tools/riscv64-unknown-elf-gcc-20181030-x86_64-linux-ubuntu14.tar.gz"

tar xzf riscv64-unknown-elf-gcc-20181030-x86_64-linux-ubuntu14.tar.gz

export PATH=${PATH}:riscv64-unknown-elf-gcc-20181030-x86_64-linux-ubuntu14/bin/

● Download the TensorFlow source with git@github.com:mars20/tensorflow.git
● Enter the source root directory by running cd tensorflow
● Checkout out the "riscv_mcu" branch by running git checkout riscv_mcu
● Download the dependencies by running tensorflow/lite/experimental/micro/tools/make/download_dependencies.sh.

This may take a few minutes
● Build and test the library with make -f tensorflow/lite/experimental/micro/tools/make/Makefile TARGET=riscv32_mcu

https://github.com/antmicro/tensorflow/tree/riscv-mcu

Work in Progress

- Piotr at Antmicro helped us work through a lot of issues
- For example link ordering, removing exception handling

- We’re still linking in the standard C library
- RISC-V toolchain seems tricky to use on bare metal

- memcpy() is used as an optimization under the hood
- Other C library functions need to be linked in

- We don’t fully understand some of the flags (for example CPU type)
- But it’s alive! And can be run by anyone with a HiFive1 board (or Renode)
- Working on merging this into the mainline, with testing

AS USED IN

Products Running Zephyr

Intellinium Safety Shoes
Rigado IoTGateway

ProGlove Scanning Gloves

Ellcie-Healthy Smart
Connected Eyewear

hereO Smartwatch Blocks Modular Smartwatch
Grush Gaming

Toothbrush Antmicro Badge GNARBOX 2.0
SSD

➔ Triple-Modular-Redundancy fault-tolerant RISC-V
space application demonstrator for Thales

➔ SW running in the demonstrator developed in Zephyr
RTOS - excellent as standard software stack for
POSIX-compliant applications

➔ Host platform: Linux on Antmicro’s UltraScale+ devkit

FAULT-TOLERANT RISC-V FOR SPACE

http://antmicro.com/blog/2018/05/antmicro-reveals-partnership-with-thales-on-risc-v/
http://antmicro.com/blog/2018/05/antmicro-reveals-partnership-with-thales-on-risc-v/

EXAMPLE: RISC-V BADGE

• e-paper, NFC
• runs Zephyr (of course)
• open source, open hardware,

including the CPU!
• based on a portable RV32 module
• https://badge.antmicro.com

https://badge.antmicro.com

➔ Lots of good progress on both Zephyr and TF Lite
➔ we need to get them integrated now!
➔ we welcome your input for the Getting Started Guide

that is being created

SUMMARY

THANK YOU
FOR YOUR ATTENTION!

