

Running the Zephyr RTOS and TensorFlow Lite on RISC-V

RISC-V Summit, Santa Clara, Dec 03, 2018

Michael Gielda, Antmicro, mgielda@antmicro.com Piotr Zierhoffer, Antmicro, pzierhoffer@antmicro.com Pete Warden, Google, petewarden@google.com

ABOUT ZEPHYR

WHAT IS THE ZEPHYR PROJECT?

"The Zephyr™ Project is a Linux
Foundation hosted Collaboration
Project, (...) aiming to build a
best-in-breed small, scalable, real-time
operating system (RTOS) optimized for
resource constrained devices, across
multiple architectures."

WHAT IS THE ZEPHYR PROJECT?

"The Zephyr™ Project is a Linux
Foundation hosted Collaboration
Project, (...) aiming to build a
best-in-breed small, scalable, real-time
operating system (RTOS) optimized for
resource constrained devices, across
multiple architectures."

WHY BOTHER WITH TINY CHIPS?

I'm convinced that machine learning can run on tiny, low-power chips, and that this combination will solve a massive number of problems we have no solutions for right now.

Pete Warden, Google's TensorFlow Mobile Technical Lead https://petewarden.com/2018/06/11/why-the-future-of-machine-learning-is-tiny/

Zephyr Project

- Open source real time operating system
- Vibrant Community participation
- Built with safety and security in mind
- Cross-architecture with growing developer tool support
- Vendor Neutral governance
- Permissively licensed Apache 2.0
- Complete, fully integrated, highly configurable, modular for flexibility, better than roll-your-own
- Product development ready with LTS
- Certification ready with Auditable

OTHER REASONS WE NEED ZEPHYR

- targeted at IoT and making it truly vendor-neutral & open source -BlueTooth, OpenThread...
- portability, API standardization
- good scalability perspective between different systems (e.g. heterogeneous multi-core)
- grown-up OS features
- Linux-like look and feel
- modern design, software-driven
- · testing, testing, testing

SO, WHO'S IN?

Platinum Members

AS WELL AS

Silver Members

CROSS-ARCHITECTURE

Zephyr Ecosystem

Zephyr OS

- · The kernel and HAL
- OS Services such as IPC, Logging, file systems, crypto

Zephyr Project

- SDK, tools and development environment
- Additional middleware and features
- Device Management and Bootloader

Zephyr Community

- · 3rd Party modules and libraries
- Support for Zephyr in 3rd party projects, for example: Jerryscript, Micropython, lotivity

Kernel / HAL

- Scheduler
- Kernel objects and services
- low-level architecture and board support
- power management hooks and low level interfaces to hardware

OS Services and Low level APIs

- Platform specific drivers
- Generic implementation of I/O APIs
- File systems, Logging, Debugging and IPC
- Cryptography Services
- Networking and Connectivity
- Device Management

Application Services

- High Level APIs
- Access to standardized data models
- High Level networking protocols

Zephyr Roadmap 2018

2018												
	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sept	Oct	Nov	Dec
Zephyr Releases		1	.11			1.12			1.13			1.14

Zephyr 1.11	Zephyr 1.12	Zephyr 1.13	Future LTS
 OpenThread support Native POSIX Port POSIX API Layer (PSE52) FOTA Updates (LWM2M, BLE) SMP Support Lightweight Flash Storage Support the kernel (scheduler + objects) as a separate module 	 AMP Support 802.1Q - Virtual LANs Persistant Storage for BT TAP net device support SPI slave support CanBUS support Source Code modularisation: Support external modules, boards, SoCs Command line meta-tool "west" Wi-Fi driver 	 QM level qualification MISRA-C 2012: Kernel LLVM Support Precision Time Protocol (PTP) Support Improved Logging Support Eco-System: Tracing, Profiling, debugging support through 3rd party tools Multiple Git Repos Soft real-time tasklets Advanced Power Mgmt. 	 Safety and Security Pre-Certification Time Sensitive Networking (TSN) Support TEE for ARMv8-M LoRa Support SocketCAN Paging Support Dynamic Module Loading Enhanced Sensor support (support HW FIFOs) MIPS

RISC-V IN ZEPHYR

RISC-V ZEPHYR PORT

- pretty good documentation on porting and required components
- 4 platforms (including QEMU) supported today, we need more (reach out to us, we can help)!
- our <u>LiteX/VexRiscv port</u> exists but needs to be upstreamed

ADDING YOUR BOARD

- first, you need to read this
- there is some entry work to understand the structure (as with any standardised system), but
- it's really not so much code (example)

WORKING WITH ZEPHYR

SDK

- comes with an SDK (really a bunch of open source tools, don't fret) - 0.9.5 currently
- toolchains come bundled, adding a new platform requires providing a toolchain (but you can use your own)
- source a simple script and work in the console
- don't forget to also do: pip3 install -r scripts/requirements.txt

BUILDSYSTEM / CONFIGURATION

- based on CMake && (make || ninja)
- uses Kconfig format with custom extensions
- Python menuconfig implementation
- to be most probably replaced by Swiss-Army-knife CLI meta-tool, West

HELLO WORLD EXAMPLE

```
#include "contiki.h"

#include <stdio.h> /* For printf() */
/*-----*/
PROCESS(hello_world_process, "Hello world");
AUTOSTART_PROCESSES(&hello_world_process);
/*-----*/
PROCESS_THREAD(hello_world_process, ev, data)
{
    PROCESS_BEGIN();
    printf("Hello, world\n");
    PROCESS_END();
}
/*-------//
// PROCESS_END();
```

```
#include <zephyr.h>
#include <misc/printk.h>

void main(void)
{
    printk("Hello World! %s\n", CONFIG_ARCH);
}
```


TOOLS & TESTING

TESTING

- currently using SanityCheck, a runner for various simulators (QEMU, Renode, ARC simulator) and real boards
- introducing TCF, new open source framework from Intel for testing on real hardware
- strong focus on testing
- testing working group, meets every Monday

TESTING ZEPHYR IN RENODE

- Open source, permissively licensed framework targeting similar, especially multi-node systems
- Recommended Zephyr tool
- Integration with SanityCheck is being merged, with Mi-V as example platform
- Our Zephyr ports were developed on Renode
- Also working to enhance multi-node testing in Zephyr with Renode

CONTINUOUS INTEGRATION METHODOLOGY

TensorFlow Lite on RISC-V

TensorFlow Lite

https://www.tensorflow.org/lite/

- Officially supported on Android, iOS, and Raspberry Pi
- Less than 100 kilobytes of binary footprint!
- Few dependencies (for example flatbuffers instead of protobufs)
- Good support for model compression techniques like quantization

TensorFlow Lite for Microcontrollers

- Still very experimental!
- Aimed at running machine learning models on sensor data
- 20KB binary footprint (on Cortex M3), with no memory allocation, floating point, or standard C/C++ library calls

Challenge

- Want to run on RISC-V!
- Already internally running on GreenWaves GAP8
- No external targets available

First Big Question

Which RISC-V?

- Lots of different toolchains and devices
- No 'apt-get install riscv-gcc' (yet)!
- Started with the <u>GNU MCU Eclipse toolchain</u>, since it was the easiest to find
- It was hard to figure out how to target something that we could run on a real device (or in Renode)
- A colleague (Marcia Louis) suggested using the <u>SiFive Freedom E toolchain</u>
 with prebuilt binaries and targeting the SiFive FE310, which has a Renode
 definition

Getting It Working

https://github.com/antmicro/tensorflow/tree/riscv-mcu

Pre-requisites: Download pre-built RISC-V gnu tools from SiFive

```
curl -0 -L "https://static.dev.sifive.com/dev-tools/riscv64-unknown-elf-gcc-20181030-x86_64-linux-ubuntu14.tar.gz"
tar xzf riscv64-unknown-elf-gcc-20181030-x86_64-linux-ubuntu14.tar.gz
export PATH=${PATH}:riscv64-unknown-elf-gcc-20181030-x86_64-linux-ubuntu14/bin/
```

- Download the TensorFlow source with git@github.com:mars20/tensorflow.git
- Enter the source root directory by running cd tensorflow
- Checkout out the "riscv_mcu" branch by running git checkout riscv_mcu
- Download the dependencies by running tensorflow/lite/experimental/micro/tools/make/download_dependencies.sh. This may take a few minutes
- Build and test the library with make -f tensorflow/lite/experimental/micro/tools/make/Makefile TARGET=riscv32_mcu

Work in Progress

- Piotr at Antmicro helped us work through a lot of issues
 - For example link ordering, removing exception handling
- We're still linking in the standard C library
- RISC-V toolchain seems tricky to use on bare metal
 - memcpy() is used as an optimization under the hood
 - Other C library functions need to be linked in
- We don't fully understand some of the flags (for example CPU type)
- But it's alive! And can be run by anyone with a HiFive1 board (or Renode)
- Working on merging this into the mainline, with testing

AS USED IN

CSTART FOOTULAR DESIGNED BY INTELLINIUM:
Cell modern dGLTEMINI fallbada 2G
Left / Right vibrating motors
LED

External Face

External Face

Bustonium Add on
with electronic of the control of the contro

Connected Eyewear

ProGlove Scanning Gloves

Intellinium Safety Shoes

Rigado IoTGateway

Toothbrush

hereO Smartwatch

Blocks Modular Smartwatch

Antmicro Badge

GNARBOX 2.0 SSD

FAULT-TOLERANT RISC-V FOR SPACE

- → Triple-Modular-Redundancy fault-tolerant <u>RISC-V</u>
 space application demonstrator for Thales
- → SW running in the demonstrator developed in Zephyr RTOS - excellent as standard software stack for POSIX-compliant applications
- → Host platform: Linux on Antmicro's UltraScale+ devkit

EXAMPLE: RISC-V BADGE

- e-paper, NFC
- runs Zephyr (of course)
- open source, open hardware, including the CPU!
- based on a portable RV32 module
- https://badge.antmicro.com

SUMMARY

- → Lots of good progress on both Zephyr and TF Lite
- → we need to get them integrated now!
- → we welcome your input for the Getting Started Guide that is being created

THANK YOU FOR YOUR ATTENTION!