Innovation Unleashed: Solutions Enabling Embedded Intelligence

SiFive China

SiFive

3 st

Global Trends

Source: Cisco VNI Global IP Traffic Forecast, 2017 - 2022

SiFive Core IP Embedding Intelligence Everywhere

Consumer

AR/VR/Gaming devices Smart Home Imaging/Wearables

Storage/Networking/5G

SSD, SAN, NAS Base Stations, Small cells, APs Switches, Smart NICs, Offload cards

ML/Edge

Sensor Hubs, Gateways Autonomous machines IoT devices

Embedding Intelligence from the Edge to the Cloud

SiFive Core IP 2 series:

SiFive's **smallest** and most **efficient** RISC-V processor IP

MAN MAR

Core IP 7 Series Standard Cores

E76, E76-MC
S76, S76-MC
U74, U74-MC

Standard Cores represent pre-configured implementations of a Core Series which are available for free RTL and FPGA evaluations

SiFive 7 Series Embedded Intelligence Everywhere

In-cluster coherent combination of real-time and application processors

Product Map

	ECores 32-bit embedded cores MCU, edge computing, AI, IoT	S Cores 64-bit embedded cores Storage, AR/VR, machine learning	UCORES 64-bit application cores Linux, datacenter, network baseband
7 Series	E7 Series	S7 Series	U7 Series
Highest performance: 8-stage, dual-issue superscalar pipeline	> E76-MC Compare to Cortex-N Quad-core 32-bit embedded processor	 M7 > S76-MC No 64-bit Cortex equivalent Quad-core 64-bit embedded processor 	> U74-MC Compare to Cortex-A55 MP4 Multicore: four U74 cores and one S76 core
	E76 Compare to Cortex-M High performance 32-bit embedded core	A7 > S76 No 64-bit Cortex equivalent High-performance 64-bit embedded core	> U74 Compare to Cortex-A55 High performance Linux-capable processor
3/5 Series	E3 Series	S5 Series	U5 Series
Efficient performance: 5–6-stage, single- issue pipeline	E34 Compare to Cortex-R: E31 features + single-precision floating points	5F > S54 No 64-bit Cortex equivalent Int S51 features + single-precision floating point	> U54-MC Compare to Cortex-A53 Multicore application processor with four U54 cores and one S76 core
	E31 Compare to Cortex-R Balanced performance and efficiency	 R5 > S51 No 64-bit Cortex equivalent Low-power 64-bit MCU core 	> U54 Compare to Cortex-A53 Linux-capable application processor
2 Series	E2 Series	S2 Series	
Power & area optimized: 2–3-stage, single- issue pipeline	E24 Compare to Cortex-M4 E21 + single-precision floating point	4F S21 No 64-bit Cortex equivalent Area-efficient 64-bit MCU core	
	 E21 Compare to Cortex-M E20 + User Mode, Atomics, Multiply, TIM 	Λ4	
	> E20 Compare to Cortex-Mo Our smallest, most efficient core	0+	

11

Storage

Coherent in-cluster combination of application processors and real-time processors

Configurable memory maps and coherent accelerator ports for tightly coupling storage specific accelerators

Optional FPU for applications which don't need floating point capability Deterministic mode for FAST DATA applications with hard real-time constraints

Tightly integrated memories and Cache lock capability for critical real time workloads

Storage, ML, Cryptography specific **custom instructions**

64-bit real-time addressability for **BIG DATA** applications

5G/Networking

Complex arithmetic capability for accelerating baseband functions

High bandwidth accelerator ports for enabling intelligent offload processing

Configurable memory maps for optimizing QoS

In-cluster coherence of application and real-time processor enables 5G latency (<1ms) requirements

Hard real-time capabilities for scheduling baseband protocol layers

High throughput processing for next gen 5G stacks

Tightly Integrated Memories and Cache lock capability for critical real time workloads

AR/VR/Sensor Fusion

Low Latency peripheral access and coherent accelerator port

Combine with SiFive 2, 3 or 5 series for designs with tight power constraints

Coherent in-cluster combination of application processors with real time processors

Simple caching hierarchy for ease of application optimization

Workload specific customizations (AR/VR/MR/CV)

Mixed precision arithmetic for accelerating machine learning compute

Enterprise SSD

- FADU Annapurna SSD Controller
 - World's first RISC-V SSD controller
- FADU Bravo Series Enterprise SSD
- **3.5GB** throughput and **800K IOPS** at less than 1.8W
- Powered by SiFive E51

"SiFive's RISC-V Core IP was **1/3 the power** and **1/3 the area** of competing solutions, and gave FADU the flexibility we needed in optimizing our architecture to achieve these groundbreaking products." J. Lee, FADU CEO

Intelligent Edge

- Microsemi's PolarFire SoC
- World's first RISC-V SoC FPGA architecture bringing Real-time to Linux
- Targeted for **real-time Linux** applications at the Edge
- **Defense-grade** security features
 - Secure boot
 - DPA safe crypto core
 - SECDED on all memories
 - Physical memory protection/PMP
- Powered by SiFive U54-MC and SiFive E51

Wearable AI

- Huangshan No. 1 (MHS001) from Huami using Upbeat Tech
- Integrated biometric signal processor with 4 dedicated AI engines and built-in CNN based inference engine
- **38 percent more efficient** than the Arm Cortex-M4
- Powered by SiFive E31

"The world's first artificial intelligence powered wearable chipset"

huami

SiFive Core IP: Embedded Intelligence Everywhere

Efficient Performance

Scalability

Embedding intelligence for a world of a Trillion Connected Devices

Compelling Feature Set

Contact Us

sales@sifive-china.com

marketing@sifive-china.com

recruitment@sifive-china.com

SiFive China Wechat

- Best in class in RISC-V based solution with local customer support
- Leader in RISC-V ecosystem development to support China semiconductor industry, growing with open-source community
- Pioneer in cloud-based SaaS service for custom ASICs.