A RISC-V ISA Extension for Ultra-Low Power IoT Wireless Signal Processing

Carolynn Bernier, Hela Belhadj Amor, Zdeněk Přikryl

Who is Codasip?

- The leading provider of RISC-V processor IP
 - Bk series of RISC-V-compliant processors
- Company founded in 2014 in the Czech Republic
- Founding member of the RISC-V Foundation, <u>www.riscv.org</u>
 - Member of several working groups in the Foundation
 - Actively contributing to LLVM and other open-source projects

Now Codasip GmbH

- Headquarters in Munich, Germany
- R&D in Brno, Czech Republic
- Offices in Silicon Valley, US, and Shanghai, Pudong PRC

Who is CEA Leti?

CEA

- The French Alternative Energies and Atomic Energy Commission
- Most innovative research organization in the world, Thomson Reuters, 2015
- A key player in research, development and innovation in four main areas:
 - 1. Defense & security
 - 2. Low carbon energies
 - 3. Fundamental research in the physical sciences and life
 - 4. Technological research for industry
- 20k employees, 1350 PhD and postdoc students
- 704 patent applications in 2018

CEA Leti

- Micro and nanotechnologies research institute of CEA
 - Headquarters in Grenoble, France

leti

Ceatech

- 65 startups created since foundation in 1967
- Silver member of the RISC-V Foundation, <u>www.riscv.org</u>

Scalable Radio Solutions for Ultra-low Power IoT

- Dozens of standardized IoT standards for short-range and long-range IoT
- Industrial IoT often requires proprietary IoT protocols
- Extended lifetime of IoT applications (+ 10 year deployments):
 - Industrial IoT requires future-proofed designs
 - Satellite IoT systems require physical layer protocol updates

Software-Defined Radio (SDR)

- Many commercial platforms
- Easy to add a new protocol
- Easy to update over time
- And other benefits

But with the GPP CPU it is *not* ultra low power (nor cheap)

	Programm- ability	Flex- ability	Port- ability	Modul- arity	Computing Power	Energy Efficiency	Soft Core	FPGA	Cost (USD)
Imagine-based [151]	1	×	×	×	M .um	Low	Imagine Stream Processor	N/A	N/A
USRP X300 [17]	1	~	×	× .	High	Low	PC	Xilinx Kintex-7	$\sim 4 - 5K$ Total
USRP E310 [17]	1	~	~	1	High	High	Dual-core ARM Cortex-A9	Xilinx Artix-4	$\sim 3K$ Total
KUAR [34]	~	×		×	Medium	Low	Pc + 2× PowerPC cores	Xilinx Virtex II Pro	N/A
LimeSDR [146]	~	X	×	~	High	Low	PC	Intel Cyclone IV	~ 300 Board Only
Ziria [147]	~	~	×	×	High	Low	PC	Depends on App	N/A
Sora [18]		~	×	×	High	Low	PC	Xilinx Virtex-5	~ 900 Board Only
SODA [67]	1	~	~	×	High	High	ARM Cortex-M3 + Processing Elements	N/A	N/A
Iris [148]	~	~	~	~	High	High	Dual-core ARM Cortex-A9	Xilinx Kintex-4	$\sim 1.2K$ Total
Atomix [19]	1	~	~	~	High	Medium	TI 6670 DSP	N/A	~ 200 DSP Only
BeagleBoard-X15 [159]	1	~	~	~	High	Medium	2× TI C66x DSPs + 2× ARM Cortex-A15 & 2× M4	N/A	~ 270 Board Only
Airblue [20]	~	~	~	~	High	High	N/A	Intel Cyclone IV	$\sim 1.3K$ Board Only
WARP v3 [21]	~	×	~	~	High	High	2× Xilinx MicroBlaze cores	Xilinx Virtex-6	$\sim 7K$ Total
PSoC 5LP [164]	~	×	~	~	Low	High	ARM Cortex-M3	N/A	10 Board Only
Zynq-based [166]	~	~	~	1	High	High	Dual-core ARM Cortex-A9	Xilinx Kintex-4	$\sim 1.2K$ Total

TABLE IX COMPARISON OF EXISTING SDR PLATFORMS

[Akeela, 2018 https://www.sciencedirect.com/science/article/pii/S0140366418302937]

Which CPU for ULP IoT?

- Target architecture is a very small and fast CPU associated with ITCM and DTCM
- Wireless DSP requires linearity and low distortion
 - Operators MUST NOT saturate
 - Operators MUST NOT overflow \rightarrow but checking for overflows is too costly
- Wireless DSP must conserve dynamic range (DR)
 - The useful signal is often contained in the least significant bits
 - $_{\circ}$ Beware of quantification noise \rightarrow take care when rescaling the signal
- Most wireless signals are complex : i(t) + j*q(t)
 - Frequent use of MUL, ADD, SUB, MAG, SHIFT, ... instructions on 8/16/32 bit complex data
- Demodulation/compensation algorithms are mostly based on correlations \rightarrow i.e. multiplication
- Input signal stream is typically <= 8 bits
 - Data streams are typically 8 / 16 / 32 bits → fits well on a 32-bit machine
- Ideal case for RISC-V with ISA Extension

Exploring the ISA Extension Jungle

Opportunities

- 16 or 32-bit instructions
- Wide opcodes \rightarrow up to 5 operands
- First operation on 8-bit data is ALWAYS a complex multiplication
- Advanced CMOS allows single-cycle complex operators
- Tiny relative cost of ALU operators

Wanted

- Minimal set of **useful** instructions
- Only 32-bit opcodes for low decoding complexity
- Easy way to explore opportunities, including but not limited to:
 - C compiler
 - RTL
 - Testbench

Ideal case for Codasip Bk3 and Codasip Studio

ISA Extension

- ISA exploration done in a few weeks
- Ended with 13 instructions
 - 。 "Zero-cost"

asio

- Reconfigurable multiplier HW
- Systematic output dynamic range adjust
- Efficient automatic gain control

	Mnemonic	Instruction				
	76	Zero-Cost Instructions				
	ADDC16 rd, rs1, rs2, imm	16-bit Addition & Shift Right Arithmetic Immediate				
	SUBC16 rd, rs1, rs2, imm	16-bit Subtraction				
	MUL2ADD16-32 rd, rs1, rs2, imm	Two "16x16" and Signed Addition				
	SRAC16 rd, rs1, imm	16-bit Shift Right Arithmetic Immediate				
	SLLC16 rd, rs1, imm	16-bit Shift Left Logical Immediate				
	CRASC16 rd, rs1, rs2, imm	16-bit Cross Add & Sub				
	CRSAC16 rd, rs1, rs2, imm	16-bit Cross Sub & Add				
	MULC8-16 rd, rs1, rs2, H1, H2, C, imm	if C=0: 8-bit complex multiplication, <i>conj</i> =1 if C=1: 8-bit complex conjugate multiplication, <i>conj</i> =-1				
	MULC16 rd, rs1, rs2, C	if C=0: 16-bit complex multiplication, <i>conj</i> =1 if C=1: 16-bit complex conjugate multiplication, <i>conj</i> =-1				
	MULC16-32 rd1, rd2, rs1, rs2, C	if C=0: 16-bit complex multiplication, <i>conj</i> =1 if C=0: 16-bit complex multiplication, <i>conj</i> =-1				
ſ	CLRSB rd, rs	Count leading redundant sign bits				
	PACK-INIT rs	Initialize packing barrel-shifter				
	PACK rd, rs1, rs2	Pack a 16 bit complex value on 32 bits after removing <i>r_sh_pack</i> redundant sign bits				

ISA Extension IoT Testbenches

Testbench 1

- FSK demodulation
- IoT protocols:

Bluetooth

• Testbench 2

LoRa preamble synchronization
Spreading Factor (SF) = 7, 11

LoRa

PPA

- Baseline design: Codasip BK3, RV32IM
- GF22FDX, 8T, RVT
- Frequency shift key (FSK) Demodulation testbench used for power measurement
 LLVM flag: -03

	Area	Fmax	Power		
Baseline BK3	31.5 kGE	>1 GHz	3.54 μW/MHz		
Extended design	40.4 kGE (+ 28 %)	650 MHz (- 35 %)	3.56 µW/MHz (+ 0.5 %)		
	"Zero" power cost target achieved!				

PPA

• Simulation conditions: TT, 0.8 V, 20/24/28, RVT, with clock gating

• Results for the highest complexity phase of algorithm:

	Baseline			Extended			
IoT Testbench	Cycles /sampl e	Fmin (MHz)	Peak Power (µW)	Cycles /sampl e	Fmin (MHz)	Peak Power ¹ (µW)	
Bluetooth LE	68	136	447	51	102 (- 25 %)	358 (- 20 %)	
LoRa SF ² =7, BW=125 kHz	164	20.5	135	90	11 (- 45 %)	110 (- 19 %)	
LoRa SF=7, BW=500 kHz	164	82	303	90	45 (- 45 %)	203 (- 33 %)	
LoRa SF=11, BW=125 kHz	204	25	149	106	13 (- 48 %)	114 (- 22 %)	
LoRa SF=11, BW=500 kHz	204	101	357	106	52 (- 48 %)	227 - 37 %)	

Ultra-low power target achieved!

Conclusion

- ULP IoT needs SDR
- RISC-V with ISA extension gives the best PPA
- ISA exploration done with Codasip Bk3 processor and Codasip Studio
 - Fast and easy turnaround
 - It's fun!

PPA clearly shows the benefit of the ISA extension for ULPIoT.

Thank you!

Questions?

www.codasip.com www.leti-cea.fr