
SHAKTI Processor Project

Arjun Menon

Senior Project Officer RISE Group | IIT Madras

Processor IPs

Processor IPs

Features:

- 3-stage in-order
- ISA: RV[32/64] I [ACM]
- Can boot FreeRTOS, Zephyr

E-Class

Src: https://gitlab.com/shaktiproject/cores/e-class

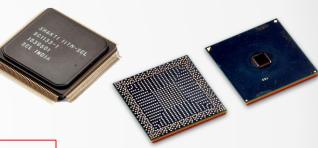
Artix-7 FPGA

Config	RV32IACM	RV64IACM
LUTs	2.5K	ЗК
Clock freq.	100 MHz	100 MHz

180nm ASIC

Config	RV32IACM	RV64IACM
Instances	22.6K	40.7K
Clock freq.	100 MHz	100 MHz

Processor IPs


Features:

- 5-stage in-order
- ISA: RV[32/64] I [ACFDMNSU]
- Branch predictor + RAS
- Daisy-chained CSRs
- 1.72 DMIPS/MHz
- Can boot Linux kernel

Prototypes

180nm 22nm (LP)

Src: https://gitlab.com/shaktiproject/cores/c-class

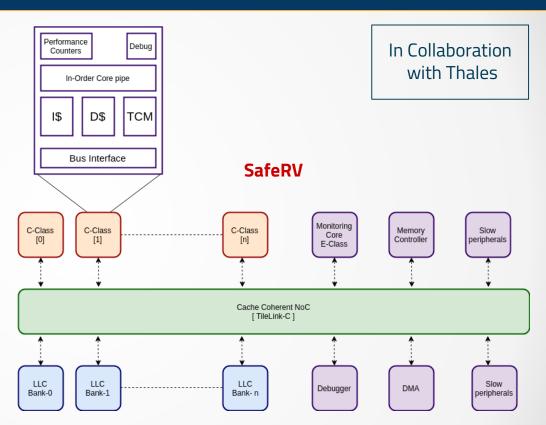
Artix-7 FPGA

	RV32IACMNSU	RV64IACMNSU
LUTs	4.5K	6.5K
Clock freq.	100 MHz	80 MHz

65nm ASIC (LP)

	RV32IACMNSU	RV64IACMNSU
Instances	40.2K	80K
Clock freq.	400 MHz	340 MHz

Core Configuration


Multicore

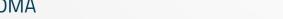
- Parameterizable no. of application cores (1-32 cores)
- Directory-based MSI cache coherence
- System management with monitor core
- TileLink-C bus protocol
- NoC with mesh topology

Safety critical applications

- Criticality aware NoC
- Triple Lock-Step (TLS)
 pipeline for fault tolerance*

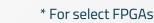
Uncore IPs

- Bus protocols
 - o AXI4/AXI4-Lite
 - o TileLink-U/H
- Bridges to/from AXI4 and AXI4-Lite with different data bus widths and clocks
- Posit-arithmetic Units + Compiler
- Peripherals


```
o SPI
```

PWM

- Quad SPITimers
- o I2C


Watchdog

o DMA

0

Offerings

Core + Uncore IP

- Various classes of processors
 - Bus protocols
 - Peripherals •
 - Fully automated FPGA bitstream generation

Verification

- CoCoTb VIPs: Coroutine Co-simulation Verification IPs*
- AAPG: Automatic Assembly Program Generator
- RiTA: RISC-V Trace Analyzer
- RISCV-Config Legalizer
- RISCOF: Compliance Testing
- RiVer: RISC-V Verification as a plugin infrastructure*

Software

- Integrated Development Environment (IDE)
 - Software Development Kit (SDK)
 - RISC-V OCaml and Mirage OS* •

Research*

- Systolic Array
- Crypto accelerators
- Side-channel attack resistance
- Fat-pointers
- Compartmentalization

Start using Shakti today!

https://shakti.org.in

