The landscape of Machine Learning software libraries and models is evolving rapidly, and to satisfy the ever-increasing demand for memory and compute while managing latency, power and security considerations, hardware must be developed in an iterative process alongside the workloads it is meant to run.
With its open architecture, custom instructions support and flexible vector extensions, the RISC-V ISA offers an unprecedented capacity for such co-design. And by energizing the open hardware ecosystem, RISC-V has supercharged research and innovation into how to improve chipmaking itself to better leverage the methods and suit the needs of software. Initiatives such as Google’s OpenMPW Shuttle show how a more open and software-focused approach to building hardware (that Antmicro firmly believes in and helps Google push forward), are key to enabling a new wave of more powerful and transparent ML-focused solutions.